
CHARACTERISATION OF BUILDING ALIGNMENTS WITH NEW MEASURES USING C4.5 DECISION TREE ALGORITHM

Sinan Cetinkaya, Melih Basaraner

ABSTRACT

Detection and characterisation of spatial patterns is crucial for cartographic generalisation since it entails preserving the patterns as much as possible within scale limits. Building alignments are commonly confronted patterns in the topographic maps/databases. They are perceptually recognised in accordance with relevant Gestalt factors, namely proximity, similarity, common orientation and continuity. This study is concentrated on how to characterise building alignments detected by automated or manual methods. To this end, new measures based on Delaunay triangulation and regression line/curve are established to correspond to the Gestalt factors. The relationship between the measures and Gestalt principles has been illustrated with a decision tree. An index value was computed by total sum of measures' values to compare and order alignments from quality aspect. Additionally, a supervised classification was performed with C4.5 algorithm thus a decision tree was obtained to be able to both associate the quality categories with the measure values and automatically assign alignments into a quality class. The findings demonstrate that proposed measures are substantially effective for representing Gestalt factors. The proposed methods can potentially enhance and ease the characterisation of building alignments in topographic map generalisation.

KEY WORDS

Building alignment characterisation, decision tree, Gestalt factors, cartographic generalisation
1 INTRODUCTION

A pattern implies a discernible coherent configuration based on the interrelationship between objects of interest through visio-cognitive processes or expert knowledge. When viewing the map, the eye discerns the spatial patterns – patterns of shape, orientation, connectedness, density and distribution. The user begins to record them, to explore and categorise these patterns in terms of the processes that formed them (Mackaness and Edwards, 2002). Spatial patterns are regular spatial organisations that can be perceived from spatial data sets. Steiniger (2007) distinguishes two kinds of spatial patterns: visual and geospatial. Visual patterns are the result of processes of perceptual organization without the use of domain knowledge, while geospatial patterns are patterns that are accessible only to persons with specific domain knowledge. In this context, alignments of buildings are identified as a visual pattern in conjunction with Gestalt factors (proximity, common orientation, similarity, continuity etc.; see Wertheimer (1923)) between the buildings.

Generalisation entails explicit modelling and extracting mostly implicit spatial patterns and relationships in order to keep or enhance them. It is critical to preserve patterns in generalisation because when cartographers generalise maps, they never restrict their view and analysis to the position of one object on the contrary they consider contextual relationships between objects and analyse them to be able to convey geographic information from source product to the target products (Ruas, 1998). A difficulty in generalisation is the need for data enrichment in order to identify and represent the implicit geographic phenomena before manipulating them. In order to keep the alignments during generalisation requires not only identify aligned buildings but also characterise them (Mustiere and van Smaalen, 2007). A characterisation is necessary to compare different structures to decide which one is the most structuring. To characterise the identified aligned structures, indicators are computed to define whether a structure is morphologically regular and/or extensionally important (Boffet and Rocca Serra 2001).

Related works have introduced the concepts and techniques for the detection, characterisation and generalisation of building alignments and a multi-scale behaviour of the patterns. Regnauld (2001) proposes a method of selection based on the typification principle that creates a result with fewer objects, but preserves the initial pattern of distribution. For this purpose, he uses a graph of proximity on the building set, which is analysed and segmented with respect to various criteria, taken from Gestalt theory. This analysis provides geographical information that is attached to each group of buildings. The information from the analysis stage is used to define methods to represent them at the target scale. The aim is to preserve the pattern as far as possible, preserve similarities and differences between the groups with regard to density, size and orientation of buildings. Boffet and Rocca Serra (2001) use three indicators to characterise the identified building alignments: 1) number of buildings, 2) homogeneity of the centroid distances, 3) size homogeneity. They state that the last one seems to be the most relevant one. Christophe and Ruas (2002) present a method to both detect and characterise building alignments to assist two contextual generalisation operations namely typification and displacement. The detected alignments are characterised with those perceptual criteria: proximity, arrangements, size, shape and orientation of the buildings. Mackaness and Edwards (2002) investigate the behaviour and evaluation of patterns at large changes in scale and those qualities that should be invariant at small
scales. Ruas and Holzapfel (2003) attempt to define the perceptual quality of building alignments. To this end, six parameters, i.e. alignment (continuity), distance, shape, size, orientation and stretching are identified and then they try to obtain similar results by adjusting weights of the parameters with the ones provided from the alignment rankings by expert cartographers. Li et al. (2004) give the factors having an impact on the recognition of building alignments based on Gestalt principles. After that, several geometric measures, such as the sum of the building area, mean separation and standard deviation of the separations, are assigned to each alignment. An appropriate operation is then selected to generalise a building alignment by means of the assigned information. Yan et al. (2008) focus on matching the characteristics of the generated building groups to appropriate generalization operations and algorithms with a series of rules based on parameters such as the number of buildings involved, the size of buildings, the ratio of building area and free space, etc. as well as threshold values such as a separation threshold and an area threshold. Zhang (2012) determines the homogeneity of building patterns based on the standard deviations of relevant properties, namely spacing (nearest distance), size, orientation, and shape with equal weights.

Characterisation of building alignments is relatively less researched area. Size, shape, orientation and inter-distance measures have been commonly used parameters for their characterisation. Of all these parameters, shape and orientation definitions are somewhat fuzzy and not enough representative. Besides they can negatively affect the characterisation process. Therefore, this article aims to: 1) discover new alternative measures to qualify the alignments, 2) illustrate the relationship between the measures and the Gestalt factors, 3) categorise the alignments based on the new measures with supervised classification. This article is organised as follows: in section 2, measures proposed in previous studies are described. New alternative measures and methods are introduced in section 3. Finally, experimental study is explained in section 4.

2 GESTALT PRINCIPLES AND COMMON MEASURES

2.1 Gestalt principles

Gestalt principles guide the study of how people perceive visual components, instead of many different parts, to formulate the regularities according to which the perceptual input is organized into unitary forms. Six main Gestalt factors determine how the visual system automatically groups elements into patterns: Proximity, Similarity, Closure, Symmetry, Common Fate, and Continuity. Common orientation factor is also added to the list with respect to specific cartographic patterns by Li et al. (2004) and Yan et al. (2008). For building alignments, closure is special case of continuity and symmetry is very rarely confronted factor and also rather complicated to measure so they have not been used in this study as well as in the related studies. The principle of common fate is only relevant in dynamic maps (Yan et al. 2008). Therefore, only the factors, given in Table 1 are taken into consideration for building grouping in this research.
Table 1: Gestalt factors and their corresponding terms used in this study

<table>
<thead>
<tr>
<th>Gestalt Factors</th>
<th>Description</th>
<th>Corresponding Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity</td>
<td>elements tend to be integrated into groups if they are similar to each other</td>
<td>Size, Shape</td>
</tr>
<tr>
<td>Common Orientation</td>
<td>elements arranged in a similar direction are perceived as a group</td>
<td>Orientation</td>
</tr>
<tr>
<td>Proximity</td>
<td>elements tend to be perceived as aggregated into groups if they are near each other</td>
<td>Inter-Distance, Stretching</td>
</tr>
<tr>
<td>Continuity</td>
<td>oriented units or groups tend to be integrated into perceptual wholes if they are aligned with each other</td>
<td>Continuity</td>
</tr>
</tbody>
</table>

2.2 Common measures in the literature

In this section, descriptions of the measures for the commonly used Gestalt factors in the related works are given.

Size is measured with area for buildings in all of the previous works and simple standard deviation is computed for determine the homogeneity changing.

Shape is difficult to define with single parameter. Several measures may possibly be required depending on the complexity and characteristics of a polygon. However, previous alignment characterisation studies employ single parameter when quantifying shapes. These parameters are shown in Table 2 where \(b_i \) is the building in an alignment.

Table 2: Shape measures

<table>
<thead>
<tr>
<th>Measures</th>
<th>Definition (equation)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concaavity</td>
<td>(\frac{Area(b_i)}{Area(\text{convexHull}(b_i))})</td>
<td>Ruas and Holzapfel (2003)</td>
</tr>
<tr>
<td>Compactness</td>
<td>(\frac{\text{Perimeter}(b_i)}{2 * \sqrt[2]{\pi * Area(b_i)}})</td>
<td>Zhang (2012)</td>
</tr>
<tr>
<td>Edge number ratio</td>
<td>(\frac{\text{Min}{\text{NumberOfEdges}(b_i, b_j)}}{\text{Max}{\text{NumberOfEdges}(b_i, b_j)}})</td>
<td>Yan et al. (2008)</td>
</tr>
</tbody>
</table>

In order to derive a shape homogeneity value, Ruas and Holzapfel (2003) just employ standard deviation while Zhang et al. (2013) use Equation 1. Yan et al. (2008) use edge number ratio to evaluate shape similarity between two adjacent buildings.

\[
\text{Shape homogeneity} = 1 - \frac{\text{STD}_{(S)}}{\text{Mean}_{(S)}}
\]

where \(\text{STD}_{(S)} \) denotes standard deviation of shape values. \(\text{Mean}_{(S)} \) stands for average shape value.
Orientation measures for buildings are elaborately investigated by Duchene et al. (2003). Former studies propose the following orientation measures in the alignment characterisation (Table 3).

Table 3: Orientation measures

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main wall orientation</td>
<td>Orientation of the longest edge of a building polygon. (mod [90°]).*</td>
<td>Ruas and Holzapfel (2003)</td>
</tr>
<tr>
<td>Statistically weighted wall orientation</td>
<td>Average value of the orientations of each edge weighted by their lengths. (mod [180°]).</td>
<td>Zhang et al. (2013)</td>
</tr>
<tr>
<td>SMBR orientation</td>
<td>Orientation of the longest edge of Smallest Minimum Bounding Rectangle (SMBR) of a building polygon. (mod [180°]).</td>
<td>Yan et al. (2008)</td>
</tr>
</tbody>
</table>

* mod means modulo.

Ruas and Holzapfel (2003) use standard deviation as in the shape measure to produce the homogeneity value. Zhang et al. (2013) uses statistically weighted wall orientation and computes orientation homogeneity value according to Equation 2.

\[
\text{Orientation homogeneity} = 1 - \frac{\text{STD}(O)}{\text{NFactor}}
\]

where *NFactor* is a normalising factor and equals to 45°. \(\text{STD}(O)\) means standard deviation of orientations.

Inter-distance is defined with nearest distances except the study of Boffet and Rocca Serra (2001) in which centroid distances are used. Table 4 shows the summary of the previously proposed inter-distance measures.

Table 4: Inter-distance measures

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
<th>Source</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Distance</td>
<td>Minimum distance value between two building polygons</td>
<td>Ruas and Holzapfel (2003)</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>Minimum Distance</td>
<td>Minimum distance value between two building polygons</td>
<td>Zhang et al. (2013)</td>
<td>The ratio of standard deviation to mean value</td>
</tr>
<tr>
<td>Centroid Distance</td>
<td>Centroid distance from each building to all other buildings</td>
<td>Boffet and Rocca Serra (2001)</td>
<td>Standard deviation normalised by maximum distance</td>
</tr>
<tr>
<td>Minimum edge of true connection triangles</td>
<td>The length of shortest triangle edge between two buildings</td>
<td>Yan et al. (2008)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Stretching is computed by Ruas and Holzapfel (2003) as the ratio of average distance between successive buildings to square root of the average building area in the alignments.

Continuity called as alignment by Ruas and Holzapfel (2003) is measured through a regression line created using the centroids of buildings. Average distance from each centroid of a building to the regression line is used as a measure.
3 METHODOLOGY FOR THE CHARACTERISATION OF BUILDING ALIGNMENTS

First of all, we have to denote that this methodology needs building alignments to have been detected beforehand. In the methodology, new measures are proposed using auxiliary data structures based on Delaunay triangulation and regression line/curve. Five measures (area of free space –AoFS, triangle edge index –TEI, building density in the alignment –BDA, continuity –Cont., and alignment elongation –A. Elon.) that are the alternatives to the measures described in section 2 are introduced. Then using these measures, following issues are examined:

— relationship between proposed measures and Gestalt factors and the representative capability of the measures,
— derivation an index value for quantitative evaluation of each alignment and making a manual classification that is going to be used to obtain a decision tree in the next issue,
— qualitative evaluation of the alignments using C4.5 decision tree algorithm.

Figure 1 shows general flow chart of the proposed methodology for the characterisation of the building alignments.

3.1 Measure definitions

Two kinds of measures are established for alignment characterisation: a) Free Space (FS)-based measures, b) the building vertex-based measures. These measures are the alternative measures to the ones presented in the Table 1 and have been analysed in Section 4.1 to reveal whether they represent the Gestalt factors.
In the remaining sections of the article, mean values and standard deviations are denoted by \(\mu \) and \(\sigma \) in the following equations respectively.

3.1.1 Free Space-based measures

Three measures were defined based on FS: area of FS, edges of triangles in FS and building density in alignment. Equations of these measures were given in Equations 3, 4 and 5.

FS is the area between two buildings, formed by the triangles obtained through Constrained Delaunay Triangulation (CDT) (Figure 2). Triangulation process must obey the following rules:

- Triangle edges cannot intersect with buildings’ edges.
- Buildings cannot contain any triangle.
- Triangles must connect two consecutive buildings.

![Figure 2: Constrained Delaunay triangulation between successive buildings](image)

Area of FS (AoFS) index is the ratio of the standard deviation to the mean value of FS areas in an alignment (Equation 3).

\[
\text{AoFS}_{\text{index}} = \frac{\sigma_{\text{Area}(FS)}}{\mu_{\text{Area}(FS)}}
\]

Triangle Edge Index (TEI) is obtained in two steps; at first step, edge length deviation is computed via length of triangle edges in each FS then triangle edge index is calculated with the ratio of standard deviation to the mean value of length deviations of the edges.

\[
\text{EdgeLengthDeviation} = \frac{\sigma_{\text{Length(Edges)}}}{\mu_{\text{EdgeLengthDeviations}}}
\]

\[
\text{TEI} = \frac{\sigma_{\text{EdgeLengthDeviations}}}{\mu_{\text{EdgeLengthDeviations}}}
\]
Building Density in Alignment (BDA) is the ratio of total area of buildings to sum of total area of FS and building areas.

\[
BDA = \frac{\sum_{i=1}^{N} \text{Area}(b_i)}{\sum_{i=1}^{N} \text{Area}(b_i) + \sum_{i=1}^{N} \text{Area}(FS)}
\]

(5)

where \(N\) is the number of buildings in an alignment.

3.1.2 Building vertex-based measures

The following two measures are based on regression line/curve of the building vertices in an alignment. Regression line/curve and the alignment (as a single object formed by group of the buildings) are overlaid to obtain end points of the regression line (Figure 3). If buildings in an alignment are located along the y axes, regression line estimation becomes problematic because the slope of regression line goes infinity. To solve this problem, alignment is rotated about 30 degree via Helmert transformation.

Alignment Elongation (A. Elon.) is ratio of two times of the maximum deviation of vertices from the regression line to length of the regression line.

\[
A.\text{Elon.} = \frac{2 \times \max (r_i)}{\text{length}(\text{regressionLine})}
\]

(6)

where \(r_i\) means distance between vertex and adjusted line (Figure 3). In order to obtain the width of the alignment approximately, \(2 \times \max (r_i)\) has been used. In fact \(\max (r_i)\) value can probably be smaller at the other side of the regression line/curve. But it is considered as trivial.

Continuity (Cont.) is the ratio of maximum deviation of building vertices to mean values of the building edges in an alignment.

\[
\text{Cont.} = \frac{\max (r_i)}{\mu_{\text{building Edges in Alignment}}}
\]

(7)

3.2 Decision tree (C4.5)

Decision tree is a kind of supervised classification method used in several fields such as artificial intelligence and pattern recognition. It enables qualifying the building alignments easily if a simple decision tree can be established. Decision tree induction is the learning of decision trees from class-labelled training data. A decision tree is a flowchart-like tree structure, where each internal node (non-leaf node) denotes
A test on an attribute, each branch represents an outcome of the test, and each leaf node holds a class label (Han et al. 2011).

C4.5 decision tree algorithm is introduced by Quinlan (1993). It uses gain ratio as splitting criteria. The splitting ceases when the number of instances to be split is below a certain threshold. Error–based pruning is performed after the growing phase. C4.5 can handle numeric attributes. It can induce from a training set that incorporates missing values by using corrected gain ratio criteria (Rokach and Maimon, 2005). In this study, two different types of the data are assumed to be suitable for generating decision trees: boolean (Section 4.1) and numeric (Section 4.3). Numeric attributes correspond to our proposed measures while the boolen data is derived from the thresholds manually determined for the measures based on the deterioration of each Gestalt factor. Result of the algorithm will generate threshold values for the each internal node (i.e. the measures).

4 EXPERIMENTS AND RESULTS

Twenty three alignments (from ID 1 to 23 in Table 5) have been selected from a topographic data set at the scale 1:10.000 for experimental testing. In addition, seven artificially created alignments (from ID 24 to 30 in Table 5; Figure 4) were included in test data set. For every alignment, five measures have been calculated (Table 5). To reveal the alignment characteristics, three tests have been carried out. First, in Section 4.1, the relationship between proposed measures and Gestalt factors has been investigated. Second, alignments have been ranked manually classified through the index values based on the total sum of the values of the measures in Section 4.2. Finally, in Section 4.3, the alignments have been automatically classified in five categories by a decision tree according to their index values.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.652</td>
<td>0.319</td>
<td>0.576</td>
<td>1.635</td>
<td>0.135</td>
<td>16</td>
<td>0.444</td>
<td>0.875</td>
<td>0.323</td>
<td>0.787</td>
<td>0.069</td>
</tr>
<tr>
<td>2</td>
<td>0.169</td>
<td>0.183</td>
<td>0.362</td>
<td>0.704</td>
<td>0.124</td>
<td>17</td>
<td>0.183</td>
<td>0.424</td>
<td>0.407</td>
<td>0.654</td>
<td>0.104</td>
</tr>
<tr>
<td>3</td>
<td>0.256</td>
<td>0.331</td>
<td>0.506</td>
<td>1.157</td>
<td>0.091</td>
<td>18</td>
<td>0.404</td>
<td>0.508</td>
<td>0.752</td>
<td>2.205</td>
<td>0.128</td>
</tr>
<tr>
<td>4</td>
<td>0.287</td>
<td>1.157</td>
<td>0.130</td>
<td>0.327</td>
<td>0.050</td>
<td>19</td>
<td>0.359</td>
<td>0.291</td>
<td>0.663</td>
<td>1.596</td>
<td>0.117</td>
</tr>
<tr>
<td>5</td>
<td>0.410</td>
<td>0.532</td>
<td>0.350</td>
<td>1.196</td>
<td>0.137</td>
<td>20</td>
<td>0.292</td>
<td>0.213</td>
<td>0.638</td>
<td>2.067</td>
<td>0.202</td>
</tr>
<tr>
<td>6</td>
<td>0.077</td>
<td>0.119</td>
<td>0.558</td>
<td>0.864</td>
<td>0.084</td>
<td>21</td>
<td>0.477</td>
<td>0.196</td>
<td>0.352</td>
<td>1.566</td>
<td>0.192</td>
</tr>
<tr>
<td>7</td>
<td>0.294</td>
<td>0.641</td>
<td>0.444</td>
<td>1.089</td>
<td>0.095</td>
<td>22</td>
<td>0.376</td>
<td>0.332</td>
<td>0.532</td>
<td>1.777</td>
<td>0.249</td>
</tr>
<tr>
<td>8</td>
<td>0.083</td>
<td>0.015</td>
<td>0.314</td>
<td>0.839</td>
<td>0.159</td>
<td>23</td>
<td>0.222</td>
<td>0.171</td>
<td>0.760</td>
<td>2.387</td>
<td>0.118</td>
</tr>
<tr>
<td>9</td>
<td>0.512</td>
<td>0.555</td>
<td>0.465</td>
<td>0.944</td>
<td>0.101</td>
<td>24</td>
<td>0.000</td>
<td>0.000</td>
<td>0.224</td>
<td>0.576</td>
<td>0.090</td>
</tr>
<tr>
<td>10</td>
<td>0.499</td>
<td>0.827</td>
<td>0.272</td>
<td>0.640</td>
<td>0.070</td>
<td>25</td>
<td>0.098</td>
<td>0.034</td>
<td>0.298</td>
<td>1.168</td>
<td>0.138</td>
</tr>
<tr>
<td>11</td>
<td>0.234</td>
<td>0.160</td>
<td>0.167</td>
<td>0.294</td>
<td>0.078</td>
<td>26</td>
<td>0.111</td>
<td>0.160</td>
<td>0.473</td>
<td>0.991</td>
<td>0.148</td>
</tr>
<tr>
<td>12</td>
<td>0.386</td>
<td>0.531</td>
<td>0.407</td>
<td>1.129</td>
<td>0.177</td>
<td>27</td>
<td>0.342</td>
<td>0.395</td>
<td>0.244</td>
<td>0.763</td>
<td>0.122</td>
</tr>
<tr>
<td>13</td>
<td>0.619</td>
<td>0.361</td>
<td>0.312</td>
<td>0.533</td>
<td>0.168</td>
<td>28</td>
<td>0.652</td>
<td>0.742</td>
<td>0.437</td>
<td>0.523</td>
<td>0.059</td>
</tr>
<tr>
<td>14</td>
<td>0.325</td>
<td>0.554</td>
<td>0.448</td>
<td>0.777</td>
<td>0.089</td>
<td>29</td>
<td>0.398</td>
<td>0.110</td>
<td>0.585</td>
<td>3.213</td>
<td>0.461</td>
</tr>
<tr>
<td>15</td>
<td>0.487</td>
<td>0.504</td>
<td>0.405</td>
<td>0.841</td>
<td>0.180</td>
<td>30</td>
<td>0.000</td>
<td>0.000</td>
<td>0.414</td>
<td>0.519</td>
<td>0.061</td>
</tr>
</tbody>
</table>
4.1 Revealing the relationship between measures and Gestalt factors

The artificial alignments have been utilised to detect how changes in alignments with respect to each Gestalt factor affect the measures. In this respect, one of them (ID 24) was designed as an ideal alignment (i.e. a nearly perfect alignment in view of all Gestalt factors) and only one Gestalt factor was deteriorated in each scenario (Figure 4).

![Figure 4: Artificial alignments for detection of relation between measures and Gestalt factors. The green boxes denote the substantial changes on the measures during the deterioration of a Gestalt factor.](image)

Deviation of each measure from ideal case was investigated based on Gestalt factors and it was revealed which measure dramatically changes in which case. For example, it can be seen in Figure 4 that building density in alignment (BDA) and continuity (Cont.) measures change owing to the deterioration of common orientation. Experimentally determined threshold values were used to find out whether any measure influences any Gestalt factor. Accordingly, if value of a measure exceeds its threshold value then Boolean value of the measure pertaining to Gestalt factor is assigned ‘True’ otherwise ‘False’ (Table 6).

![Table 6: Measures and Gestalt factors; numeric values under the captions denote assigned thresholds. This table was obtained by using Figure 4. Green boxes in Figure 4 correspond to the ‘True’ value.](image)
Figure 5 shows the decision tree obtained by employing C4.5 algorithm with the input values given in Table 6 using WEKA™ software (Witten et al. 2011). This decision tree enables to reveal the most influential Gestalt factor that reduces the alignment quality. Figure 5 also illustrates an example of the determination process of the most deteriorating Gestalt factor. Using the calculated measure values of an alignment, determination of the most deteriorated Gestalt factor is accomplished by progressing through the decision tree step by step.

Figure 5: The obtained decision tree and a sample alignment illustrating the relations between the measures and Gestalt factors. This decision tree shows that the most deteriorated Gestalt factor of the sample alignment (a) is “Similarity (Size)” in comparison to the ideal alignment (b).

4.2 Generating index values to compare alignments and supervised categorisation for the classification

An index value has been calculated with total sum of the measure values for each alignment. The smaller the index value is, the better the quality of an alignment is. So this index value can be useful in order to compare quality of alignments quantitatively.

Sorted alignment index values in ascending order have been given in Figure 6. A classification has been manually performed based on leaps in the index values shown on the chart. Five classes have been distinguished for qualifying the alignments: Very Good, Good, Average, Bad, and Very Bad.

Figure 6: Chart of sorted index values of the alignments. Artificial ones are shown in italic and underlined style.
Results of both quantitative and qualitative assessment of the alignments can be seen in Figure 7. In the next section, a classification is made via decision tree by using the manually assigned class values.

Figure 7: Alignments ordered by indexed values and their assigned quality classes

4.3 General classification of alignments by decision tree

A classification process is required in order to qualitatively categorise the alignments. For this purpose, a decision tree has been derived through C4.5 algorithm in WEKA™ by employing the measure values and the assigned quality classes as input data. The obtained classification tree is demonstrated in Figure 8.
Figure 8: Decision tree for qualifying building alignments.

The confusion matrix of the decision tree is given in Table 7. The success rate of fitting the values with class label into the decision tree is 96.7%. Just one alignment has been wrongly classified as good instead of average. Thus, an alignment can be qualified based on the measures through this decision tree.

Table 7: Confusion Matrix

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Very Good</th>
<th>Good</th>
<th>Average</th>
<th>Bad</th>
<th>Very Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Good</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Very Bad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

5 DISCUSSIONS

It has been proven by the experimental testing that proposed five alternative measures can reflect the changes in the Gestalt factors. So we can say that our measures are valid and relevant for the alignment characterisation. Sum of the measures has been used to get the one index value for the quantitatively comparison of the alignments and to manually classify the alignments in five groups. Finally a decision tree has been established to assign an alignment a quality class by using manually qualified alignments. In other words, this decision tree enables which alignment is better perceived graphically according to Gestalt factors. Therefore, this information guide the contextual generalisation of buildings to communicate this kind of spatial pattern more correctly at smaller scales (Basaraner and Selcuk, 2008). If one needs to know about the quality order of alignments, an index value can be calculated by the sum of the measures (i.e. smaller values correspond to better quality). Furthermore, proposed characterisation methods can be embedded into detection of the building alignments in an iterative manner. In other
words, during the detection of the alignments, alignment candidates can be compared to each other to select the best one.

When compared to the studies in the literature (Ruas and Holzapfel 2003; Zhang 2012), not only alternative measures have been proposed but also a simple decision tree has been established to assign a quality class to an alignment. In comparison to the previously employed orientation and shape measures, our measures offer a powerful alternative with respect to Gestalt factors. For example, continuity measure proposed by Ruas and Holzapfel (2003) does not consider the size of buildings (scale factor) because it uses the mean deviation value. But continuity measure proposed in this study is scale independent because it is an index value (ratio of maximum deviation to the average building edge).

All the proposed measures in this study are scale independent because all of them are proportional values, hence they can be used at all relevant scales. The results show the usability of the proposed measures while automated calculation of them especially based on the free space is non-trivial process. Decision tree thresholds can be said generic enough since our data set includes variety of building alignments. Although, by using the decision tree, an alignment can be easily assigned one of five classes in maximum three query steps (see Figure 8), precision of the decision tree can be improved by incorporating more alignment samples. Alignment elongation measure has not found a place in the decision tree because the other four measures are sufficient to discriminate the alignment data set.

Regression curve may not be fitted well for curvilinear alignments owing to the lack of mathematical constraints. In this case, elongation and continuity measures are negatively affected. Therefore, regression curves should be automatically drawn and visually checked beforehand (Figure 9). We used minimum area bounding rectangle during the construction of the Delaunay triangulation. This approach may have little effect on the values of the measures based on free space.

Figure 9: Circle regression problem

6 CONCLUSIONS

This paper has proposed new measures and approaches for building alignment characterisation. Five measures have been developed that corresponds to Gestalt factors. Three of them are derived from free
spaces constructed through constrained Delaunay triangulation. Two of them are based on the regression line/curve. Three implementations have been performed regarding to measures, indexing and classification. First of all, alternative measures have been developed to represent the relevant Gestalt factors. Relationships between each factor and measures have been established via a decision tree trained with artificial alignment data. Second, quality index values of the alignments have been computed with total sum value of the all measures for comparison. Five quality categories have been manually determined by means of the sorted index chart and then the categories have been assigned to the alignments as a class attribute. Finally, a decision tree has been obtained in order to produce qualification criteria for alignments without quality category. It is easy to determine an alignment quality by means of the resulting decision tree. In contextual generalisation, selection of the generalisation operators will be more precise by using the proposed approaches.

As a future work, building alignment generalisation based on quality value can be investigated. In other words, relation between generalisation operators and building alignment quality can be examined with respect to the scale transitions.

Acknowledgements

We thank to The Scientific and Technological Research Council of Turkey (TUBITAK) for seven month PhD research scholarship in Institute of Cartography, TU Dresden as well as Dirk Burghardt, Mehmet Selcuk and the reviewers for the valuable suggestions.

References:

Sinan Cetinkaya, Melih Basaraner | DOLOČANJE LASTNOSTI PORAVNAV OBJEKTOV NA PODLAGI NOVIH MER Z UPORABO ALGORITMA ODLOČITVENIH DREVES C4.5 | CHARACTERISATION OF BUILDING ALIGNMENTS WITH NEW MEASURES USING C4.5 DECISION TREE ALGORITHM | 552-567 |

M.Sc. Sinan Cetinkaya
Yıldız Technical University (YTU), Faculty of Civil Engineering, Department of Geomatic Engineering
34220 Esenler/Istanbul, Turkey
e-mail: sicetin@yildiz.edu.tr

Assoc. Prof. Dr. Melih Basaraner
Yıldız Technical University (YTU), Faculty of Civil Engineering, Department of Geomatic Engineering
34220 Esenler/Istanbul, Turkey
e-mail: mbasaran@yildiz.edu.tr