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MOžNOST DOlOČITVE 
VISOKO NATANČNEGA 

GEOIDA ZA OZEMlJE EGIPTA

POSSIBIlITy TO DETERMINE 
HIGHly PRECISE GEOID FOR 
EGyPT TERRITORy

This paper presents an attempt to consider whether it is 
possible to determine a geoid at the centimetre level in the 
territory of Egypt based on recently available global and local 
gravity field data. The paper has two main objectives. Firstly, 
the paper overviews previously published geoid solutions, 
while the second objective investigates the performance of 
the recent global geopotential models (GGM) in Egypt. 
The existing geoid solutions have illustrated that there 
is an insufficient distribution of data which is sampled 
inconsistently. At this time, data deficiency still exists, and to 
overcome it, we have selected a "data window" and applied 
the Least Square Collocation (LSC) technique. The outcome 
from LSC was interesting and acceptable, and we obtained 
a "sample" geoid that has a standard deviation of 11 cm for 
the external control points.

V članku predstavljamo rezultate študije, s katero smo 
preverjali, ali je mogoče na temelju dosegljivih globalnih 
in lokalnih podatkov o težnostnem polju določiti geoid z 
nekajcentimetrsko natančnostjo za ozemlje Egipta. Pri tem 
smo si zastavili dva cilja. Najprej podajamo pregled objav na 
temo izračuna geoida, sledi predstavitev aktualnih globalnih 
geopoetencialnih modelov (GGM) za območje Egipta. 
Analiza obstoječih modelov geoida v Egiptu je pokazala, da 
so izračunani na temelju neustrezne porazdelitve podatkov 
z nekonsistentnim vzorčenjem. Tudi danes za območje 
Egipta ni dovolj podatkov za izračun geoida. Za rešitev 
težave smo izbrali pristop podatkovnega okna ter uporabili 
tehniko kolokacije po metodi najmanjših kvadratov (angl. 
least square collocation – LSC). Rezultati so zanimivi in 
sprejemljivi, saj znaša standardna deviacija za odstopanja 
izračunanega geoida od vrednosti na kontrolnih točkah 11 
centimetrov.

| 578 |

| 64/4 |
RE

CE
NZ

IRA
NI

 ČL
AN

KI 
| P

EE
R-

RE
VIE

W
ED

 AR
TIC

LE
S

GEODETSKI VESTNIK | letn. / Vol. 64 | št. / No. 4 |
SI 

 |  
EN

V
G 2

0
2

0

COBISS.SI
http://10.15292/geodetski-vestnik.2020.03.376-388


Moamen Awad Habib Gad, Oleg Odalović, Sofija Naod | MOŽNOST DOLOČITVE VISOKO NATANČNEGA GEOIDA ZA OZEMLJE EGIPTA | POSSIBILITY TO DETERMINE HIGHLY PRECISE GEOID FOR 
EGYPT TERRITORY | 578-593 |

1 INTRODUCTION

Over the last few decades, the demand for high-resolution geoid models has grown, especially after the 
widespread use of the Global Navigation Satellite System (GNSS). With the broad use of the GNSS 
in surveying and mapping, vertical geodetic datum transformations are still a critical issue in Egypt. 
Many countries have already developed geoid models that play an essential role in the derivation of 
orthometric heights from GNSS observations. In Egypt, there have been several geoid evaluations until 
now, but the determination of the geoid is still an important and essential issue (Shaker, El Sagheer 
and Saad, 1997).

The determination of Earth’s shape and its external gravity field by using data collected on Earth’s 
surface represents a solution to the geodetic boundary value problem (GBVP). Depending on 
the boundary data given on the boundary surface and the type and number of unknown func-
tions to be solved, different formulations of the GBVP exist. Stokes’ Boundary Value Problem 
deals with the determination of a potential field, harmonic outside the masses, associated with 
Laplace’s differential equation. Observables, in this case, are gravity anomalies given everywhere 
on the geoid. Thus, this approach is based on a reduction of observational data for gravitational 
effects induced by the topographical masses. In a mathematical sense, Stokes’ BVP belongs to 
the class of the “free” boundary value problem (boundary surface is of unknown geometry) with 
oblique derivative associated with the Laplace operator. Many reference materials are available 
for this subject (Heiskanen and Moritz, 1967; Heck, 2003; Sansò and Rummel, 1997; Grafarend 
and Niemeier, 1971).

Practically, the modified Stokes’ formula that combines local terrestrial data with a global geopotential 
model (GGM) is often used nowadays. The optimum modification of Stokes’ formula, introduced by 
(Sjöberg, 2003), is employed so that the expected mean square error of the combined geoid height is 
minimised. According to this stochastic method, the approximate geoid height is first computed from 
the modified Stokes’ formula using surface gravity data and a GGM. The precise geoid height is then 
obtained by downward continuation and by adding topographic and ellipsoidal corrections to the ap-
proximate geoid height.

The commonly adopted and applied approach to regional gravimetric geoid determination is the so-
called Remove-Compute-Restore (RCR) technique (Schwarz, Sideris and Forsberg, 1990). The complete 
expansion of GGMs is used in conjunction with regional terrestrial gravity data via the spherical Stokes’ 
integral. In principle, in the RCR technique, any a priori known signal features are first removed from 
the observed data, before the prediction process, and then appropriately added back (restored) to the 
predicted features. After the removal of those effects, the resulting residual could be treated practically 
as centred data with minimum signal mean and standard deviation. The removal usually involves low-
frequency global features, implied by an appropriate high-resolution harmonic model of global geo-
potential. Moreover, a suitable high-resolution Digital Terrain Model (DTM) is usually used to account 
for local topographic effects (Figure 1).

The following factors that affect the quality and accuracy of the necessitated precise geoid model for 
Egypt are:

 – The amount, quality, and distribution of the available terrestrial gravity data,
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 – Existing GGMs quality and spatial resolution, and
 – Quality and accuracy of GPS/levelling (GPS/H) derived undulations

The LSC algorithm is a flexible tool for combining all possible heterogeneous data in one unified solution 
to solve any desired type of anomalous signals. The LSC estimated signals, which have minimum error 
variance among all other solutions, could also be evaluated at any optional point (Moritz, 1978; Moritz, 
1980). This study’s main objective is whether it is possible to determine the geoid at the centimetre level 
in the territory of Egypt by using LSC.

Figure 1: Overview of data processing steps for remove-compute-restore procedure.

The gravity anomaly ∆g is the difference between the observed gravity value g, after the at-
mospheric correction δA and a normal or theoretical gravity value γo at the mean Earth’s ellipsoid 
(Moritz, 1980):

 ∆g  g  δA  γo (1)

Especially, if the homogeneous input data are free-air anomalies, ∆g, then the GGM low-frequency 
part, ∆gGGM, and topographic effect, ∆gTOPO, could be removed from the local data to obtain the residual 
anomalies, ∆gR (Forsberg and Tscherning, 1981):

 ∆gR  ∆g  ∆gGGM  ∆gTOPO (2)
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Hence, the obtained ∆gR values are then used as input for LSC to predict the corresponding values of 
undulation, while the values of height anomalies are determined as shown in eq. (3):

 ζ  ζREF  ζGGM  ζTOPO, (3)

where ζREF is computed from residual gravity anomalies employing, for example, the Stokes’ integral 
or LSC, ζGGM is the long-wavelength part and ζTOPO is the short-wavelength part determined by using 
DTM from Shuttle Radar Topography Mission (SRTM).

Based on the determined height anomalies, it was necessary to use the following formula to determine 
geoid undulation from height anomalies and Bouguer anomaly as (Heiskanen and Moritz, 1967):

 ,oBg
N Hζ

γ
∆

= +  (4)

where ∆gB are Bouguer anomalies, H o is the orthometric height, and γ
_

     is the mean normal gravity along 
the normal plumb line between ellipsoid and telluroid.

A schematic diagram of the general computation procedure, which is considered as one of the possible 
solutions is depicted in Figure 2. The processing procedures consist of:

(1) Computation of gravity anomalies and geoid undulation values from observed data.
(2) Calculating the corresponding gravity anomalies values and height anomalies from GGM to obtain 

the differences between them (i.e., the residual values).
(3) Using the remove-restore strategy to:
 - remove the effect of a GGM
 - remove the effect of the topography.
(4) Estimating the empirical covariance function for the residual data after the computation of terrain 

correction.
(5) Determining the parameters of analytic representation of the empirical covariance function.
(6) Using LSC to determine residual quasigeoid undulations from gravity data only (gravimetric 

quasigeoid), verifying error estimates of data, and checking for gross errors, which could be re-
moved if the errors are large. Otherwise, new data could be added, and the previous step could 
be repeated.

(7) Restoring the effect of the residual topography and adding the contributions from the GGMs.
(8) Applying the ellipsoidal correction.
(9) Transform height anomaly into geoid undulation.
(10) Checking the developed model by comparing its results against the known GPS/H control points.
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Figure 2: Flowchart of the procedure of developing a precise geoid model for Egypt.
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2 AVAIlABlE DATA AT THIS TIME 

The local gravity data used in this study has been grouped into four sets. 

The first set mostly consists of previously available free-air gravity anomalies gathered at 1849 points. 
The sources of this data are documented in many previous works (Amin, El-Fatairy and Hassouna, 
2002; 2003a; El Tokhy, 1993), with -4.37 mGal as mean (average) and 0.73 mGal as standard devia-
tion. Besides, free-air gravity anomaly values at 267 points were obtained from the Bureau Gravimetric 
International (BGI), where their mean value is -6.09 mGal, and the standard deviation is 0.24 mGal. 
The total number of the first set is 2116 data points. Figure 3 shows an irregular distribution of the 
available gravity anomaly data with large gaps, especially over the land. The data coverage is relatively 
homogeneously distributed over the seas.

Figure 3: Spatial distribution of the available terrestrial and marine gravity anomalies data points.

The second set consists of marine free-air gravity anomalies at 66,492 points, which have been gathered 
by BGI with an average -26.15 mGal and 7 mGal standard deviations. Most of the measurements were 
executed and supervised by the General Petroleum Company under the Egyptian Academy of Sciences and 
Technology (Kamel and Nakhla, 1987). The National Gravity Standard Base Net of Egypt (NGSBN77) 
consists of 71 stations with standard deviations ranging from 0.01 to 0.18 mGal (Figure 4). It includes 
existing stations of the International Gravity Standardization Net 1971 (IGSN71) in Egypt (11 stations). 
The standard error of the adjusted IGSN71 gravity values was less than ± 0.1 mGal (Morelli et al., 1972).
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Figure 4: The National Gravity Standard Base Net (NGSBN77).

The third set covers 546 gravimetric data points from the National Imagery and Mapping Agency (NIMA) 
terrestrial data (Figure 3) and 1240 local Ground Control Points gathered from different construction projects.

Figure 5: First and second-order geodetic networks HARN and NACN (Dawod and Ismail, 2005).

The fourth set includes the GPS/H undulation data points obtained from the first order geodetic network 
(High Accuracy Reference Network – HARN) that covers the entire Egyptian territory and consists of 
30 stations with an approximate separation of 200 km. The second network is the National Agricultural 
Cadastral Network (NACN) that mainly covers the Nile valley and the Delta. NACN consists of 112 
stations, with an approximate station separation of 50 km. Both networks are depicted in Figure 5 (Da-
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wod and Ismail, 2005). Also, additional 670 data points had been collected from several sources, such 
as construction or petroleum projects.

3 CHRONOlOGy OF ATTEMPTS FOR GEOID DETERMINATION IN EGyPT

Several attempts have been performed for geoid determination in Egypt. A typical result for all these at-
tempts is the low accuracy of the estimated geoid undulations, especially over areas lacking enough data. 

Egyptian Geodetic Datum (EGD) was defined in 1907 with Helmert 1906 ellipsoid as a reference ellipsoid. 
The geoid undulation was set to zero at the initial point (station F1 located at Al-Mouqatam Mountain). 
Mean Sea Level computed at Alexandria tide gauge, based on low/high water daily readings through the 
period 1898-1906, was adopted as Egypt’s geoid (Cole, 1944). Alnaggar developed the first geoid in 1986 
using the LSC technique and heterogeneous data. That geoid referred to the WGS72 global geodetic 
datum with 16.47 m as a mean value, and 3.3 m in terms of root mean square (RMS) (Dawod, 2009).

In 1993, El-Tokhey developed a geoid relative to the GRS80 datum using gravity, astronomic, Doppler, 
and GPS data. In the same year, (Saad, 1993) investigated the accuracy improvements and redefini-
tion of the Egyptian vertical control networks (Dawod, 2009). At the same time, Nassar, Hanafy and 
El-Tokhey (1993) developed the Ain Shams University (ASU93) national geoid, which was based on 
applying the LSC.

In 1995 El-Sagheer applied Fast Fourier Transformation (FFT) techniques to generate a DTM called 
DTM-95, which was used to predict the geoid with 32.19 m mean value and 3.71 m RMS. In the same 
year, El-Shazly (1995) investigated the redefinition of Egypt’s vertical datum based on analysing Sea Surface 
Topography and levelling by GPS. Two national GPS geodetic control networks were established by the 
Egyptian Survey Authority in 1995. The first was the HARN network that covers the entire Egyptian 
territory, and the second network was the NACN network (Dawod, 2009).

In 1997, an accurate gravity framework for Egypt was established through the Egyptian National Grav-
ity Standardization Network 1997 (ENGSN97). The ENGSN97 150 gravity points (plus another 100 
stations) have been utilised by (Dawod, 2001).

The data used during the previously mentioned period was the gravimetric data, mostly. However, the 
data suffer from significant gaps, particularly in the eastern and western deserts, which is eventually 
directly reflected in the computed geoid’s accuracy (Dawod and Alnaggar, 2000).

A significant accomplishment in the field of geodesy was initiated in the last two decades. It started 
with the development of Ain Shams University’s (ASU2000) national geoid, with estimated internal and 
external accuracy of 0.6 m and 1 m on average. Tscherning et al. (2001) developed a geoid model for 
the Lake Nasser area with 10.08 m as a mean value and 0.26 m in terms of RMS. A generation of geoid 
models for Egypt on a five-minute grid was developed by (Saad and Dawod, 2002).

From 2007 to 2015, many attempts have been made, including Abd-Elmotaal (Abd-Elmotaal, 2006), who 
developed and applied a high-degree tailored reference model by merging the available gravity anomalies with 
EGM96. (Dawod, 2008) utilised local data sets from terrestrial gravity and GPS/H stations in the context of 
developing a precise geoid model for Egypt. Its average accuracy is estimated to be 0.36 m (Dawod, 2009).
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Recently, Al-Krargy, Doma and Dawod (2014) developed a national geoid for Egypt using recent surveying 
data with an estimated accuracy of ±18.4 cm. Additionally, El-Ashquer, Elsaka and El-Fiky (2017) have 
improved the hybrid local geoid model for Egypt, with hybrid residual height anomalies ranging from 
–1.5 m to +0.9 m. The mean of 0.22 m and the standard deviation of 0.17 m, were obtained. In the 
last two decades, new observations of gravimetric data have been added to the previously collected data 
(Figure 6). However, insufficient and irregular distribution of data still exists over Egypt territory.

Figure 6: Spatial distribution of the available gravimetric data utilised up to the year 2017 (Dawod and Hosny, 2017).

4 PERFORMANCE EVAlUATION OF USED GGMs OVER EGyPT TERRITORy

One of the essential processes to determine precise geoid is checking the performance of GGM over 
Egypt. The aim is to choose the best fitting GGM to the local gravity field. The evaluation process is 
applied for the next six GGMs:

 – Earth Gravitational Model EGM96 (Lemoine et al., 1998);
 – High degree combined Earth Gravitational Model EGM2008 (Pavlis et al., 2008);
 – Combined gravity field model GOCO05C (Mayer-Gürr et al., 2015);
 – Combined gravity field model GECO (Gilardoni, Reguzzoni and Sampietro, 2016);
 – Invariant of the Gravitational Gradient Tensor IGGT_R1 based on the second invariant of the 

GOCE gravitational gradient tensor (Lu et al., 2017);
 – Gravity field products from GOCE satellite using the space-wise approach release 5 (GO-CONS

-GCF -2SPW-R5) (Gatti et al., 2016).

All mentioned models are compared with 2116 terrestrial gravity data points and 812 GPS/H data points.

We can notice from Table 1, the range of mean residual values among GGMs is 7 mGal in terms of 
standard deviation. That means the resolution of GGMs does not have a significant effect on the GGMs 
accuracy over Egypt due to the small variations of gravity values. Most of the regions of Egypt are flatlands, 
and that is the reason for slight variations of gravity values. Therefore, for precise gravity field modelling 
in Egypt, any of the mentioned GGMs may be used as a reference model with the same quality level. 
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Examined GGMs indicated the superior performance of GGM GO-CONS-GCF-2SPW-R5 concerning 
free-air gravity anomalies in terms of standard deviation.

Table 1: The results of the comparison among the terrestrial gravity anomaly data at scattering points and those computed 
from the different harmonic models at the same points.

Models
Degree/
Order

Mean
mGal

Minimum
mGal

Maximum
mGal

St. dev.
mGal

Terrestrial Data -21.689 -143.300 115.550 41.757

IGG.R1 240 -9.067 -158.746 128.905 43.401

EGM2008 2190 -1.682 -161.322 232.128 49.010

EGM96 360 -8.166 -157.758 200.832 44.790

GECO 2190 -18.167 -161.230 205.003 47.153

GOCO05c 720 -5.717 -161.595 199.002 44.577

GO-CONS-GCF-2SPW-R5 330 -12.789 -159.613 121.923 41.835

Table 2: The results of the comparison among GPS/levelling undulation residuals at scattering points and those computed 
from the different harmonic models at the same points.

Models Degree/ Order
Mean

m
Minimum

m
Maximum

m
St. dev.

m

Terrestrial Data 13.917 9.204 19.331 1.976

IGG.R1 240 -0.748 -4.545 0.742 0.588

EGM2008 2190 -0.797 -5.092 0.278 0.519

EGM96 360 -0.951 -1.904 0.053 0.431

GECO 2190 -0.708 -4.508 0.579 0.578

GOCO05c 720 -0.696 -4.187 0.366 0.508

GO-CONS-GCF-2SPW-R5 330 -0.762 -4.176 0.392 0.514

According to Table 2, differences of geoid undulation among GGMs, in terms of standard deviation, 
reached 16 cm between the minimum value of 43 cm for EGM96 and a maximum residual of 59 cm 
for the IGG.RI model. In other terms, terrestrial GPS/H data have a contribution of EGM96, while no 
terrestrial data had been included in the other GGMs. 

From the above explanations, we can choose EGM96 as a reference model for precise gravity field model-
ling in Egypt because it has a good performance concerning gravity anomaly residuals.

To determine a few centimetres accurate geoid, by applying the LSC, well coverage and distribution of 
data are needed. That condition cannot be achieved regarding available data. Therefore, an area with 
dense data has been chosen as a window for calculations as shown in Figure 7. Hence, 260 data points 
of free-air gravity anomalies were used to determine geoid solutions as a sample of the whole Egypt ter-
ritory, and the solution is checked by using 59 GPS/H values.

This data set window refers to the WGS84 and IGSN71 and covers the window 30o  φ  32o and 
29o  λ  31o. The statistic calculations for those values are shown in Table 3. 

SRTM 5'×5' arc-minute was utilised to remove high-frequency features of the gravity field in Egypt, 
which also plays an important role in the smoothing strategy of the data. The SRTM with the resolu-
tion of SRTM 5'×5' arc-minute was utilised because the selected area is, in general, a flat area, and this 
resolution is less demanding in computation time needed. 
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Figure 7: DEM for whole Egypt territory and data used (blue circle – GPS/H data, grey circle gravity data).

Table 3: Statistics of original and residual gravity anomaly data

Item
Mean
mGal

Minimum
mGal

Maximum
mGal

St. dev.
mGal

Free air gravity anomaly -4.552 -78.234 57.787 20.581

RTM reduced gravity anomaly -7.915 -37.643 26.981 9.363

Final (RTM+EGM96) residual gravity anomaly -13.812 -32.430 57.519 17.623
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Topographic correction  for gravity anomalies, and geoidal heights were computed according to Eq. (5) 
and (6). This step is performed by using TC software from GRAVSOFT package (Amin, El-Fatairy and 
Hassouna, 2003b).

 ( ) ( ) ( ) ( )( )
2

2' 32 2  . /
2DEM ref c ref

G R
g G h h T G h h h h l

ρπ ρ π ρ φ λ
 

∆ = − − = − − ∆ ∆ − 
 

∑  (5)

 ( ) ( ) ( )( )
22 '3 3 32

  ( ) . /
6DEM ref

G G R
N h h h h l

π ρ ρ φ λ
γ γ

 
= − − − ∆ ∆ − 

 
∑  (6)

where TC is the classical terrain correction concerning the Bouguer plate and the first term in the equation 
is the Bouguer plate effect on the anomaly, h is the orthometric height of the computation point, h' is the 
orthometric height of the running point, G is the gravitational constant, ρ is the mean crustal density, 
href is the relevant elevation of the average surface, and l is the spatial distance between the computation 
point and the running point.

The LSC algorithm is a powerful tool in combining all possible heterogeneous data in one unified solution. 
Therefore, this technique will be used for geoid modelling in the current work. An empirical covariance 
function should be determined and used in the computation to obtain the best LSC approximation to 
the real potential field in a particular area. However, LSC’s practical solution presupposes that the grav-
ity field, and hence the relevant covariance functions, are homogeneous and isotropic, i.e., location and 
azimuth independent, which implies that the data should be as smooth as possible so that they behave 
purely randomly. That is why the removal steps mentioned above have been conducted.

Figure 8: Residual gravity disturbance empirical and analytically fitted covariance functions

One element of those smooth signals (residuals), usually the residual gravity anomaly, is used to obtain 
an isotropic empirical covariance function that represents the statistical characteristics of the local field. 
As this function merely depends on the separation between the data points, it describes the spatial vari-
ability of the local residual field under consideration.

The modelled (analytical) covariance function is fitted to the residual anomaly empirical covariance 
function via a nonlinear 3-parameter iterative least-squares adjustment until the convergence arrives, 
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resulting in the final three parameters: the unit less scale factor (c), the constant A in mgal2, and (RB  R) 
in meters. In the current study, the fitting has been done through the FORTRAN program COVFIT, 
written by P. Knudsen, as shown in Figure 8. 

After covariance-function determination, the residual heights anomalies at all points of the regional 
gravimetric survey were predicted. Next, the effect of the reference field ζREF , topographic mass effect 
ζTOPO, and the total values of height anomalies were obtained in accordance with eq. (3).

Table 4: Statistics calculations of the residuals and full predicted geoid for the chosen area

Item
Mean

m
Minimum

m
Maximum

m
St. dev.

m

Residual N 0.085 -0.630 0.420 0.207

Final N 15.814 15.079 17.481 0.475

To obtain the respective full spectrum geoid values and their error estimates, the contribution of harmonic 
model and digital elevation model (DEM), in terms of the topographic indirect effect, were then added 
back (restored) to the residual geoid values predicted at discrete points. Table 4 shows the statistics of 
the predicted geoid for the considered study area, while Figure 9 represents the obtainable geoid as a 
contour map with an interval of 10 cm.

To estimate the external accuracy of the geoid, discrete geoid values were predicted at the available 
59 control points. At those control points, geoidal heights are known in terms of GPS and levelling 
observations. 

Figure 9: Represents the obtained geoid contour map for the chosen area (interval: 0.10 m)

Table 5 shows the resulting external accuracy as a function of the statistics of the differences between 
the observed and predicted geoid values at control points. Those control points have not been used 
as data points in the geoid solution. Finally, Figure 10 shows the general representation of residuals 
surface.
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Table 5: Statistics of the differences among the observed and predicted geoid heights at GPS/H control points

Item
Mean

m
Minimum

m
Maximum

m
St. dev.

m

N(observed) – N(predicted) 0.024 -0.380 0.360 0.111

Figure 10: General representation of residuals surface

5 CONClUSION AND RECOMMENDATIONS

Based on the studied area results, as outlined by Table 5 and shown by Figure 10, the obtained accuracy 
by the LSC technique in terms of the standard deviation of the differences is considered rather satisfac-
tory. The obtained accuracy in terms of the standard deviation of the differences at control points, as 
outlined by Table 5, amount 0.11 m. Still, to generalise this solution to Egypt’s whole area, we need to 
apply and achieve the below recommendations.

Unfortunately, some of the data is out of date, and other data has inadequate and insufficient distribution 
all over Egypt’s territory, especially in the eastern and northern deserts. Hence, to obtain a geoid with 
centimetre accuracy, it is recommended to have new gravimetric measurements in Egypt’s territory and 
exchange the data with neighbouring countries. 

For this reason, these are some of the ways to fill in these gaps:

 – Airborne gravity surveys may significantly improve the gravity coverage over Egypt, 
 – Using available gravity data observations from three gravity field missions (CHAMP, GRACE, and 

GOCE) for better gravity field modelling in Egypt,
 – Perform terrestrial gravity measurements where is suitable and possible.

Adding new observations from levelling and GPS data points to cover most of the Egyptian territory 
by suitable GPS/H data points. 
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It is advisable to use the satellite-only models of the GOCO series and in combination with the available 
local geodetic data for better modelling of the Egyptian gravity field. It is also necessary to have active 
cooperation between the Egyptian surveying authority representatives and the responsible organisations 
dealing with GGM computations.

literature and references:
Abd-Elmotaal, H. (2006). High-Degree Geopotential Model Tailored to Egypt. Presented 

at the 1st International Symposium of The International Gravity Field Service 
(IGFS). Istanbul, Turkey.

Al-Krargy, E. M., Doma, M. I., Dawod, G. M. (2014). Towards an Accurate Definition of 
Local Geoid Model in Egypt using GPS/levelling Data: A Case Study of Rosetta 
Zone. International Journal of Innovative Science and Modern Engineering, 
2 (11), 1–6. http://www.ijisme.org/wp-content/uploads/papers/v2i11/
K07251021114.pdf.

Amin, M. M., El-Fatairy, S. M., Hassouna, R. M. (2002). A Better Match Of The EGM96 
Harmonic Model For The Egyptian Territory Using Collocation. Port-Said 
Engineering Research Journal.

Amin, M. M., El-Fatairy, S. M., Hassouna, R. M. (2003a). Two techniques of tailoring 
a global harmonic model: operational versus model approach applied to the 
Egyptian territory. Port-Said Engineering Research Journal, 7 (2), 559–571.

Cole, J. (1944). Geodesy in Egypt. Surveying Department, Ministry of Finance, 
Government Press.

Dawod, G. M. (2001). The Egyptian National Gravity Standardization Network 
(ENGSN97). Bulletind’information of the Bureau gravimétrique international, 
88, 35–38.

Dawod, G. M. (2008). Towards the redefinition of the Egyptian geoid: Performance 
analysis of recent global geoid and digital terrain models. Journal of Spatial 
Science, 53 (1), 31–42. DOI: https://doi.org/10.1080/14498596.2008.9635133

Dawod, G. M. (2009). Geoid modeling in Egypt. Retrieved July 2020, from https://
sites.google.com/site/gomaadawod/geoidofegypt

Dawod, G. M., Alnaggar, D. (2000). Quality control measures for the Egyptian 
National Gravity Standardization Network (ENGSN97). The Second International 
Conference on Civil Engineering, Helwan University, (pp. 578–587). Cairo, Egypt.

Dawod, G. M., Hosny, M. (2017). Towards to a Centimeter - Geoid Model for 
Engineering Surveying in Egypt: Status and Projected Activates. Journal of 
Scientific and Engineer Research, 4 (10), 312–319.

Dawod, G. M., Ismail, S. S. (2005). Enhancing the integrity of the national geodetic 
data bases in Egypt. Proceeding of FIG Working Week and GSDI-8 International 
Conference. Cairo, Egypt.

El Sagheer, A. (1995),  Development of a digital terrain model for Egypt and its 
application for a gravimetric geoid determination, Ph.D. Thesis, Shoubra Faculty 
of Engineering, Zagazig University, Egypt 

El Tokhy, M. (1993). Towards the redefinition of the Egyptian geodetic control networks: 
Geoid and best fitting reference ellipsoid by combination of heterogeneous data. 
Ph.D. thesis. Cairo: Faculty of Engineering, Ain Shams University. doi:10.1080/
14498596.2008.9635133

El-Ashquer, M., Elsaka, B., El-Fiky, G. (2017). EGY-HGM2016: an improved hybrid local 
geoid model for Egypt based on the combination of GOCE-based geopotential 
model with gravimetric and GNSS/levelling measurements. Arab J Geosci, 10, 
251. DOI: https://doi.org/10.1007/s12517-017-3042-9

El-Shazly, A. (1995). Towards the Redefinition of the vertical Datum of Egypt: an 
Analysis of Sea Surface Topography and Levelling by GPS,. Ph.D. dissertation,. 
Egypt: Cairo University.

Forsberg, R., Tscherning, C. C. (1981). The use of height data in gravity field 
approximation by collocation. Journal of Geophysical Research, 90, 78. DOI: 
https://doi.org/10.1029/JB086iB09p07843

Gatti, A., Reguzzoni, M., Migliaccio, F., Sansò, F. (2016). Computation and assessment of 
the fifth release of the GOCE-only space-wise solution. The 1st Joint Commission 
2 and IGFS Meeting, (pp. 19–23).

Gilardoni, M., Reguzzoni, M., Sampietro, D. (2016). GECO: a global gravity model by 
locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 
60, 228–247. DOI. https://doi.org/10.1007/s11200-015-1114-4

Grafarend, E., Niemeier, W. (1971). The Free Nonlinear Boundary Value Problem of 
Physical Geodesy. Bulletin Géodésique, 101 (1), 243–262. DOI. https://doi.
org/10.1007/BF02521877

Heck, B. (2003). Integral Equation Methods in Physical Geodesy. In Grafarend 
E.W., Krumm F.W., Schwarze V.S. (eds) Geodesy-The Challenge of the 3rd 
Millennium. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-
3-662-05296-9_19

Heiskanen, W., Moritz, H. (1967). Physical Geodesy. W.H. Freeman and Company, 
San Francisco and London.

Kamel, H., Nakhla, A. (1987). The establishment of the national gravity standard base 
net of Egypt (NGSBN-77). Journal of Geodynamics, 7 (3), 299–305. DOI. https://
doi.org/10.1016/0264-3707(87)90015-9

Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., P. N., Chinn, D., Olson, T. (1998). The 
Development of the Joint NASA GSFC and the National Imagery and Mapping 
Agency (NIMA) Geopotential Model EGM96. 

Lu, B., Luo, Z., Zhong, B., Zhou, H., Flechtner, F., Foerste, C., Zhou, R. (2017). The gravity 
field model IGGT_R1 based on the second invariant of the GOCE gravitational 
gradient tensor. Journal of Geodesy, 92, 561-572. DOI: https://doi.org/10.1007/
s00190-017-1089-8

Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh, W., Jäggi, A. (2015). The 
combined satellite gravity field model GOCO05s.

Morelli, C., Gantar, C., McConnell, R. K., S. B., Uotila, U. (1972). The international 
gravity standardization net 1971 (IGSN 71). Trieste, Italy: Osservatorio Geofisico 
Sperimentale .

Moamen Awad Habib Gad, Oleg Odalović, Sofija Naod | MOŽNOST DOLOČITVE VISOKO NATANČNEGA GEOIDA ZA OZEMLJE EGIPTA | POSSIBILITY TO DETERMINE HIGHLY PRECISE GEOID FOR 
EGYPT TERRITORY | 578-593 || 592 |

RE
CE

NZ
IRA

NI
 ČL

AN
KI 

| P
EE

R-
RE

VIE
W

ED
 AR

TIC
LE

S
| 64/4 | GEODETSKI VESTNIK  

SI 
| E

N

http://www.ijisme.org/wp-content/uploads/papers/v2i11/K07251021114.pdf
http://www.ijisme.org/wp-content/uploads/papers/v2i11/K07251021114.pdf


Moritz, H. (1978). Least squares collocation. Reviews of geophysics, 16 (3), 421–430. 
DOI: https://doi.org/10.1029/RG016i003p00421

Moritz, H. (1980). Advanced Physical Geodesy. Herbert Wichmann Verlag Karlsruhe, 
Abacus Press.

Nassar, M., Hanafy, M., El-Tokhey, M. (1993). The Ain Shams University (ASU93) 
geoid solution for Egypt. Al-Azhar Engineering Third International Conference. 

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K. (2008). An Earth Gravitational 
Model to Degree 2160: EGM2008. Proceedings of the 2008 General Assembly 
of the European Geosciences Union. 

Saad, A. (1993). Towards the redefinition of the Egyptian vertical control network. Ph.D. 
thesis. Zagazig: Shoubra Faculty of Engineering, Zagazig University.

Saad, A., Dawod, G. (2002). A precise integrated GPS/gravity geoid model for Egypt. 
Civil Engineering Research Magazine (CERM), 24(1), 391–405.

Sansò, F., Rummel, R. (1997). Geodetic Boundary Value Problems in View of the One 

Centimeter Geoid. Springer Lecture Notes in Earth Sciences, 65, 596. DOI: https://
doi.org/10.1007/BFb0011699

Schwarz, K. P., Sideris, M. G., Forsberg, R. (1990). The use of FFT techniques in physical 
geodesy. Geophysical Journal International, 100 (3), 485–514. DOI: https://doi.
org/10.1111/j.1365-246X.1990.tb00701.x

Shaker, A., El Sagheer, A., Saad, A. (1997). Which geoid fits Egypt better. Proceedings 
of the International Symposium on GIS/GPS, (pp. 15–19). Istanbul, Turkey.

Sjöberg, L. E. (2003). A general model of modifying Stokes’ formula and its least 
squares solution. Journal of Geodesy, 77 (7–8), 459–464. DOI: https://doi.
org/10.1007/s00190-003-0346-1

Tscherning, C., Radwan, A., Tealeb, A., Mahmoud, S., Mohamed, A., Hassan, R., Saker, 
K. (2001). Local geoid determination combining gravity disturbances and GPS/
levelling: A case study in the Lake Naser area, Aswan, Egypt. Journal of Geodesy, 
75 (7–8), 343–348. DOI: https://doi.org/10.1007/s001900100185

Moamen Awad Habib Gad
University of Belgrade, Faculty of Civil Engineering, 

Department of Geodesy and Geoinformatics
Bulevar kralja Aleksandra 73, SRB-11000 Belgrade, Serbia

e-mail: eng_moamen205@hotmail.com

Assoc. prof. Oleg Odalović, Ph.D.
University of Belgrade, Faculty of Civil Engineering, 

Department of Geodesy and Geoinformatics
Bulevar kralja Aleksandra 73, SRB-11000 Belgrade, Serbia

e-mail: odalovic@grf.bg.ac.rs 

Sofija Naod
University of Belgrade, Faculty of Civil Engineering, 
Department of Geodesy and Geoinformatics
Bulevar kralja Aleksandra 73, SRB-11000 Belgrade, Serbia
e-mail: sofijanaod@gmail.com

Gad M. A. H., Odalović O., Naod S. (2020). Possibility to determine highly precise geoid for Egypt territory. Geodetski vestnik, 64 (4), 578-593. 
DOI: https://doi.org/10.15292/geodetski-vestnik.2020.04.578-593

Moamen Awad Habib Gad, Oleg Odalović, Sofija Naod | MOŽNOST DOLOČITVE VISOKO NATANČNEGA GEOIDA ZA OZEMLJE EGIPTA | POSSIBILITY TO DETERMINE HIGHLY PRECISE GEOID FOR 
EGYPT TERRITORY | 578-593 | | 593 |

RE
CE

NZ
IRA

NI
 ČL

AN
KI 

| P
EE

R-
RE

VIE
W

ED
 AR

TIC
LE

S

GEODETSKI VESTNIK | 64/4 |

SI 
| E

N

https://doi.org/10.15292/geodetski-vestnik.2020.03.376-388



