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Up-to-date cadastral maps are crucial for urban planning. 
Creating those maps with the classical geodetic methods is 
expensive and time-consuming. Emerge of Unmanned Aerial 
Vehicles (UAV) made a possibility for quick acquisition of 
data with much more details than it was possible before. 
The topic of the research refers to the challenges of automatic 
extraction of building footprints on high-resolution 
orthophotos. The objectives of this study were as follows: (1) 
to test the possibility of using different publicly available 
datasets (Tanzania, AIRS and Inria) for neural network 
training and then test the generalisation capability of the 
model on the Area Of Interest (AOI); (2) to evaluate the 
effect of the normalised digital surface model (nDSM) on 
the results of neural network training and implementation. 
Evaluation of the results shown that the models trained on 
the Tanzania (IoU 36.4%), AIRS (IoU 64.4%) and Inria 
(IoU 7.4%) datasets doesn't satisfy the requested accuracy to 
update cadastral maps in study area. Much better results are 
achieved in the second part of the study, where the training 
of the neural network was done on tiles (256x256) of the 
orthophoto of AOI created from data acquired using UAV. 
A combination of RGB orthophoto with nDSM resulted in 
a 2% increase of IoU, achieving the final IoU of over 90%. 

Ažurni katastrski načrti so ključnega pomena za urbanistično 
načrtovanje, njihovo posodabljanje pa je drago in zahteva 
veliko časa. Razvoj daljinsko vodenih letalnikov (angl. 
unmanned aerial vehicles – UAV) je omogočil hiter zajem 
podatkov z veliko višjo stopnjo podrobnosti od klasične 
geodetske izmere. V raziskavi se ukvarjamo s samodejnim 
zajemom odtisov stavb iz ortofotov visoke ločljivosti. Cilja 
naše študije sta bila: (1) preskusiti možnosti uporabe različnih 
javno dostopnih podatkovnih nizov (Tanzania, AIRS in 
Inria) za učenje nevronskih mrež ter nato preskusiti zmožnosti 
generalizacije modela območja obravnave; (2) oceniti vpliv 
normaliziranega digitalnega modela površja na rezultate 
učenja in uporabo nevronskih mrež. Rezultati so pokazali, da 
modeli, ki smo jih učili na omenjenih podatkovnih nizih, niso 
zadovoljivi, saj je prekrivanje identificiranih odtisov stavb z 
referenčnimi podatki znašalo za podatkovni niz Tanzania 
36,4%, za AIRS je bila vrednost 64,4% za Inria pa le 
7,4%. Boljše rezultate smo dosegli v drugem delu raziskave, 
kjer je bilo učenje nevronskih mrež izvedeno na delih (256 
x 256 pikslov) ortofota, pridobljenega na podlagi podatkov, 
zajetih z UAV. Pri kombiniranju ortofota z normaliziranim 
digitalnim modelom površja se je še povečal delež prostorskega 
ujemanja z referenčnimi podatki (IoU) in znašalo 90 %.
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1 INTRODUCTION

Automatic extraction of building footprints, the outer surface of building rooftop, on high-resolution 
orthophoto is one of the most challenging and essential tasks. This information finds its application in 
urban planning, especially in detailed regulatory planning and 3D city modelling. Although it is pos-
sible to extract building footprints manually it is very time consuming and expensive, especially in the 
case of large urban areas. With the development of computer technology, there was a significant number 
of attempts to complete this process automatically. Most of those attempts can be grouped into two 
categories, image classification and image segmentation. 

Extraction of building footprints as image classification is most simply done with only two classes assigned, 
building and non-building. In the basis of all image classification algorithms lies the idea of assigning each 
image pixel to a certain class. Image classification algorithms are commonly classified into two categories: 
pixel-based and object-based methods. Pixel-based classification analyses each pixel individually and assigns it 
to a class based on its spectral similarities with the class. Thank you for your comment. Updated accordingly

The object-based classification was first introduced and demonstrated in the 1970s but was not widely ac-
cepted until the mid-1990s due to low computing power (de Kok, Schneider, and Ammer, 1999). Object-
based classification, in comparison to pixel-based, does not operate on single pixels, but segments consisting 
of many pixels that have been grouped using some of the image-segmentation algorithms (Guo et al., 2018). 
Image segmentation algorithms separate buildings from their surrounding on orthophoto. Over the past 
decades, a significant amount of image segmentation algorithms has been proposed, that are commonly 
divided into the following groups: pixel, edge, region and artificial neural networks based techniques. Seg-
ments created by an image-segmentation algorithm can then be classified in many ways, for example, by 
comparing mean spectral characteristics of segments with class training samples, or by using a pixel-based 
classification of every segment, and assigning the whole segment to the class that most pixels belong to. 

Development of deep learning architectures, especially Convolutional Neural Networks (CNN) and 
Recurrent Neural Networks (RNN), and state-of-the-art methods, such as:

 – for image classification: AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), GoogleNet (Szegedy 
et al., 2015), Residual Network (ResNet) (He et al., 2017b); 

 – for image semantic segmentation: Fully Convolutional Network (FCN) (Long, Shelhamer, and 
Darrell, 2015), U-Net (Ronneberger, Fischer, and Brox, 2015); 

 – for object detection: Region Convolutional Neural Network (R-CNN) (Girshick et al., 2014), You 
Only Look Once (YOLO) (Redmon et al., 2016); 

 – for instance image segmentation: Mask R-CNN (He et al., 2017a), Fully Convolutional Instance 
Segmentation (FCIS) (Li et al., 2017); etc.,

inspired researchers to apply those methods for building footprint extraction.

There is a lot of research conducted to determine the best neural network model for the extraction of 
building footprints. Wu et al. (2018) perform extraction of building footprints using the multi-constraint 
fully convolutional network (MC-FCN) and compare its performance with the U-Net model. Although 
the proposed model achieves better results than with U-Net, this difference is not significant in com-
parison to the longer time period needed to train the network.
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Maltezos et al. (2018) attempted to detect changes between two different epochs of data acquisition by 
using CNN, Linear Supported Vector Machine (SVM) and Radial Base Function kernel SVM. Results 
indicated that CNN (average quality: 65% (new buildings) and 77% (unchanged buildings)) provides 
higher classification accuracy compared to the results provided by SVM (average quality: 57% (new 
buildings) and 74% (unchanged buildings)).

Ševo and Avramović (2016) attempted to automatically detect buildings on UAV images using CNN based 
approach on GoogleNet architecture, initialised with weights trained to convergence on the ImageNet 
(Deng et al., 2009) database. ImageNet database is probably the largest dataset for neural network training 
containing over 1.2 million high-resolution images, classified into the 1000 different classes (Krizhevsky, 
Sutskever, and Hinton, 2012). They achieved an accuracy of 98.61%, with training on UCMerced dataset 
(UAV images 256 x 256 pixels) and USGS national map (high-resolution image 5000 x 5000 pixels).

The objectives of this study are:
1. to determine the suitability of presented Res-U-Net-4 approach for automatic extraction of building 

footprints on high-resolution orthophotos,
2. to determine the possibility of using transfer learning and open datasets for automatic extraction of 

building footprints in different urban areas,
3. to evaluate the influence of heights (nDSM and Digital Terrain Model (DTM)) on the accuracy of 

building footprints extraction.

2 STUDy AREA

The AOI for building footprint extraction for urban planning is part of the city Banja Luka, Republic 
of Srpska, cadastral municipality Česma 2, which overview is illustrated in Figure 1. AOI is a suburban 
area on the right side of river Vrbas with small detached houses that consists of slope and flat, mainly 
red colour, roof surfaces. A detailed regulatory plan aimed to redesign the present settlement with single-
family housing, planning new residential buildings, plots, and supporting facilities, new roads, and public 
spaces by using a comprehensive, integrated planning approach (Milojević, 2018). In the initial stage 
of the plan, it was necessary to perform an update of cadastral maps and mapping of buildings, among 
which some were not mapped.

Figure 1: Overview of AOI. The right image shows the orthophoto of the AOI, zone 1 is a testing area, zone 2 is a training area, 
and zone 3 is a validation area.
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3 METHODOlOGy

In this paper, a pixel classification method to extract building footprints from UAV images based on a 
deep learning algorithm is proposed. We propose the workflow showed in Figure 2, which summarises 
the approach followed in this paper and consists of three main steps: pre-processing, image segmenta-
tion, and accuracy assessment. 

Figure 2: workflow used in this research.

| 548 |

RE
CE

NZ
IRA

NI
 ČL

AN
KI 

| P
EE

R-
RE

VIE
W

ED
 AR

TIC
LE

S
| 64/4 | GEODETSKI VESTNIK  

SI 
| E

N



Zoran Kokeza, Miroslav Vujasinović, Miro Govedarica, Brankica Milojević, Gordana Jakovljević | SAMODEJNO ZAJEMANJE ODTISOV STAVB IZ UAV PODOB Z UPORABO NEVRONSKIH MREŽ | AUTO-
MATIC BUILDING FOOTPRINT EXTRACTION FROM UAV IMAGES USING NEURAL NETWORKS | 545-561 |

3.1 Pre-processing

UAV images of AOI are acquired using the small quadcopter DJI Mavic PRO (DJI Mavic Pro User Manual, 
2017), in November 2018. The period of the year for image acquisition was determined by project re-
quirements and natural conditions, to complete the process while the trees are without leaves but before 
the snow. The flight altitude was set to 87 m above the ground level, which provided images with a spatial 
resolution of 2.84 cm/pixel. We used the double grid flight pattern, which is suitable for 3D modelling 
(Martinez et al., 2019). The forward overlap and side overlap between images was 80%. A total of 4276 
images was collected over the AOI. Acquired data is then processed applying the Structure from Motion 
(SfM) and multi-view stereo (MVS) algorithms (Figure 2), as described by Westoby et al. (2012) and Bi-
anco, Ciocca and Marelli (2018). The result of processing is a dense point cloud, orthophoto, and Digital 
Surface Model (DSM) of AOI. In this study, the nDSM was chosen instead of DSM because it removes the 
terrain topography and leaves only object above the ground (Koc San and Turker, 2006). In order to create 
nDSM, which represents the difference between DSM and DTM, the ground points should be extracted 
from the created point cloud. Different approaches can be used for classification of ground points such as 
filtering based on geometrical features (Axelsson, 2000) or automatic raw point cloud classification by us-
ing Artificial Neural Networks (ANN) (Jakovljevic et al., 2019). In this paper, the Agisoft Metashape was 
used for processing of UAV images and point cloud classification (Agisoft Metashape User Manual, 2019). 

Labelling of the buildings was done manually in QGIS. The Cesma A and Cesma B training dataset 
consist of only 82 buildings footprint (Figure 1, Zone 1), while the validation part (Figure 1, Zona 3) 
consists of 40 buildings. Based on the data collected in the AOI, two datasets were created. Cesma A 
dataset (consists of orthophoto) and Cesma B dataset (consists of orthophoto and nDSM) (Figure 2).

In order to test the generalisation possibilities of already trained neural network in a different part of 
the world, some publicly available datasets are used. Due to the rise of open source and interest in the 
automatic mapping of buildings, more and more high-quality UAV imagery datasets are available. Some 
of them are presented inTable 1. The comparison (Table 1) indicates that there are significant differences 
between datasets in terms of spatial resolution and coverage area. When using transfer learning the basic 
idea is to reduce the need for large datasets (Soekhoe, van der Putten, and Plaat, 2016), which indicates 
that the area covered by the dataset is not as crucial as other parameters, although all datasets feature 
relatively broad coverage. The more significant difference is a spatial resolution which should not be a 
limitation when it comes to object-level recognition, but when it comes to the automatic high-precision 
mapping of buildings, it will significantly affect the final result, especially for smaller buildings (Chena 
et al., 2019). 

Table 1: Comparison of publicly available datasets that can be used for building footprint extraction.

Data type Target classes Area covered (km2) Spatial resolution (cm) Location

AIRS (Chena et 
al., 2019)

RGB building 457 7.5
Christchurch, 
New Zeland

Inria (Maggiori et 
al., 2017)

RGB building 810 30
Ten regions in the 
USA and Austria

Tanzania RGB building 100 7.7 Zanzibar

Besides the datasets presented in Table 1, there are many more of which important to mention are 
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SpaceNet Challenge datasets (Etten, Lindenbaum, and Bacastow, 2018) and Massachusets Buildings 
Dataset (Mnih, 2013). SpaceNet Challenge datasets are the largest dataset available for satellite image 
segmentation, featuring high-resolution images for four cities (Etten, Lindenbaum, and Bacastow, 2018). 
Massachusets Buildings Dataset is one of the first aerial image datasets, used for training of CNNs, that is 
made publicly available. SpaceNet was not used because it provides off-nadir while the labels are provided 
using nadir images, which makes precise mapping practically impossible. At the same time, Massachusets 
dataset adopts the OpenStreetMap data for ground truths (Mnih, 2013), which may bring significant 
noise into the data, such as missing or incorrect labelling, caused by crowdsourcing.

Figure 3: Examples of images in datasets used for training of each model. 

On the other hand, the analysis of datasets mentioned in Table 1 detected several problems, such as:

 – Ground truths in Inria dataset are not aligned with building footprints, but with ground part of the building, 
which brings considerable noise in data when there are buildings that are not projected perfectly orthogonal. 

 – Tanzania dataset features the buildings that are not finished or that are demolished, which 
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brings a significant noise in data. Those buildings are featured because the dataset is created 
mainly for the classification of buildings in different categories such as complete, incomplete 
and foundation.

Examples of input images for Inria, AIRS, Tanzania and Cesma dataset are given in Figure 3. 

For the training of models, five datasets were used:

1. Inria dataset (RGB images – 3 bands), Inria model,
2. AIRS dataset (RGB images – 3 bands), AIRS model,
3. Tanzania dataset (RGB images – 3 bands), Tanzania model,
4. Cesma dataset A (RGB images – 3 bands), Cesma model A, and 
5. Cesma dataset B (RGB + nDSM images – 4 bands), Cesma model B.

The final step of the pre-processing stage was splitting all datasets into training, validation and testing 
datasets. Inria, AIRS, and Tanzania dataset consists of training (initial training set) and test datasets 
(initial test dataset). The initial training dataset was split into 80% of the data for training and 20% 
for the validation, while the test dataset was used during the testing phase. For Cesma A and Cesma 
B dataset, Zone 2 (Figure 1) was used for training, while Zone 3 (Figure 1) was used for validation. In 
order to provide insight into the generalisation ability of algorithms trained on the initial dataset (Inria, 
AIRS, and Tanzania), Cesma A Zona 1 was used as a final test dataset. Due to the processing power 
available on Colab, it was necessary to convert all input images to 256 x 256 pixel patches. Also, during 
this stage, each dataset was normalised so that all values are in the range [0, 1], as described by Sane 
and Agrawal (2017). 

3.2 Image segmentation

Image segmentation is the main stage in the extraction of the buildings’ footprints from UAV images. In 
this stage, the architecture of the proposed model is defined. After defining the model architecture, data 
augmentation is performed on all images to avoid overfitting by increasing the number of training images. 
The appropriate metrics and loss function are chosen as described in the following sections. After the 
definition of all parameters needed for model training, the implementation of the network is performed. 

3.2.1  Res-U-Net and Res-U-Net-4

In the first part of the study, a combination of original ResNet34 (He et al., 2017b) and U-Net (Figure 
4) (Ronneberger, Fischer, and Brox, 2015) architectures, called Res-U-Net (Figure 5) is used. The U-Net 
network consists of two parts: downsampling (left) and upsampling part (right). In the Res-U-Net the 
downsampling part is ResNet34 which is used for extraction of the features from the input data. In this 
part of the study, the network architecture is used without any modifications. 

In the second part of the study, the combination of modified and extended architectures, ResNet34 and 
U-Net, called Res-U-Net-4 is used (Figure 5 (a)). The downsampling part of Res-U-Net-4 is ResNet34 
architecture, which is modified to accept 4-channels of the input data.
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Figure 4: Original U-Net architecture (Ronneberger, Fischer, and Brox, 2015).

Figure 5: (a) The architecture of the Res-U-Net-4 used in this work, (b) the building block of ResNet 34.
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The input layer is followed by a convolution block that performs convolution with a 7 × 7 kernel and 
stride 2 (Figure 5(a)). This block is followed by normalisation, activation, and max-pooling layer. The 
activation layer consists of a ReLU. The following part of the downsampling consists of four encoder 
blocks, and every encoder block includes several repetitive residual blocks (Figure 5 (b)). In every residual 
block, repetitive convolution and normalisation are applied to provide downsampling. The upsampling 
part aims to extract the buildings using the feature maps and consists of several decoder blocks which are 
connected with the corresponding encoder block using skip connections. Each decoder blocks consists 
of convolution layer, batch normalisation and transposed convolution. The number of encoder and 
decoder blocks are the same. 

3.2.2 Data augmentation

The performance of the deep neural network is highly limited by the low number of training data. To 
avoid overfitting, it was necessary to perform data augmentations. Data augmentation is a technique that 
is often used to artificially increase the size of the training set by creating modified versions of images by 
performing different types of transformations (Mikołajczyk and Grochowski, 2018). This technique is 
applied randomly during the training stage and consisted of the following transformations horizontal- 
and vertical-flip, rotations and change of the brightness level.

3.2.3  Metrics

The metrics used to evaluate the results of the detection of building footprints was the Dice score and 
Intersection over Union (IoU). Dice score often referred to as F1 score, is used during the training stage 
and is calculated using the equation (1):

 
1

2
2

TP
Dice F

TP FP FN
⋅

= =
⋅ + +

 (1)

where TP, FP, FN denotes the true positive, false positive and false negative respectively (Powers, 2011).

The IoU score is standard metrics used for semantic segmentation problems. IoU is used due to its high 
correlation to geometry representation of the object, it measures the similarity between the predicted 
region and the ground-truth region for objects presented in the image and is defined by the equation (2):

 T P TP
IoU

T P TP FP FN
= =

+ +




 (2)

In the equation (2), T and P denote ground-truth and prediction regions, respectively, while TP, FP 
and FN are the same as for Dice (Powers, 2011). The precision and recall score are explained in details 
by Powers (2011).

3.2.4  loss function

For training the network, a dual loss function which combines binary cross-entropy and Dice loss is used. 
This approach showed that it slightly outperforms IoU-loss, and it is the main reason why two similar 
metric functions are used (Zhou, Zhang, and Wu, 2018). Minimisation of the loss was done using the 
Adam (Kingma and Ba, 2015) optimiser. 
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3.2.5  Implementation details and training

Due to lack of processing power available at authors end, training of network was done using publicly 
available cloud platform Colaboratory, hosted on Google Cloud. Google Colaboratory, often referred 
to as Google Colab, is based on Jupyter Notebooks and works like Google Docs object. Colab provides 
either Python2 and Python3 runtimes, which comes with pre-configured essential machine learning 
and artificial intelligence libraries, such as Pythorch, Tensorflow, Keras and Matplotlib (Carneiro et al., 
2018). Colab provides access to fully configured Graphics Processing Unit (GPU)-accelerated runtime, 
which makes neural network training practical and comfortable. The only problem is that the specific 
runtime, called a virtual machine, is deactivated after a specific period of time, often said that it is 12 
hours but during the testing stage, that time varied a lot, from few hours to over 20 hours. After runtime 
is deactivated, all user data and configuration are lost, but it is possible to connect Colab with users 
Google Drive account or Google Cloud Storage and resume tasks after activating the new virtual machine. 

For the training stage, a separate neural network for each dataset is trained, in total, five different models. 
Each model gets a name according to the dataset used for its training. The training process consisted of 
epoch training. Iteratively feeding mini-batches to the network, computing the gradients and updating 
the weights, until each patch in the training data has been processed once by the network, is considered as 
one epoch. The number of iterations in one epoch varies depending on the batch size. Limitation of the 
graphic card memory available on Colab, limited the batch size, which was chosen as big as possible for 
each network. To avoid overfitting, the early stopping is used. Early stopping is a commonly used form of 
regularisation which interrupts the training process when there is not the improvement of validation loss for 
a predefined number of epochs. Initial training hyperparameters are obtained empirically and are presented 
in Table 2. The learning rate was multiplied by 0.1 every few epochs to ensure the quality of the results.

Table 2: Initial values of hyperparameters used for training. All parameters are obtained empirically, during the testing of the 
training process on the validation set. 

Initial learning rate Weight decay Momentum

0.001 0.004 0.9

The number of epochs and batch size for the training of each neural network is given in Table 3. 

Table 3: Batch size and number of epochs in the training stage by the model.

Model name Batch size Res-U-Net Res-U-Net-4 Time per epochs [min]

Inria model (Inria 
dataset)

8 45 - 04:50

AIRS model (AIRS 
dataset)

8 42 - 08:50

Tanzania model 
(Tanzania dataset)

8 47 - 07:50

Cesma model A 
(Cesma dataset A)

4 40 - 01:20

Cesma model B 
(Cesma dataset B)

4 - 40 03:20
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All weights are initialised with the weights from ResNet34 pre-trained on ImageNet dataset. In the 
ResUNet, all weights are set to be the same as the ones in ResNet34. The same way, in the Res-U-Net-4 
for the first three channels weights, are the same as in the ResNet34, while the weights for the fourth 
channel are set to be same as the weights from the first channel of ResNet34. 

Workflow for the training of all five models is presented in Figure 2. For the first four models, 
Cesma A, AIRS, Inria and Tanzania, in the first step of the training stage input dataset consisting 
of training and validation imagery data is fed to the Res-U-Net network, which is initialised with 
hyperparameters as shown in Table 2. After that, the training process is started, during which 
fine-tuning of hyperparameters is performed, according to the analysis of training and validation 
loss function. 

Figure 6: Training and validation loss and accuracy for the five models and dataset.
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After the training stage is finished, testing and evaluation of the results are performed. The trained model 
is applied to predict building footprints firstly on the original test set, and then on the orthophoto 
(Cesma A) test set. Predictions are then compared to the ground truth labels, and values of the statistics 
are calculated. More details on statistics calculation are given in section 4. All models are evaluated on 
the same area of the orthophoto to provide consistency of results.

The training stage for the Cesma model B only differs in the segment of the input data fed to the 
network. For the Cesma model B training, validation and test sets are created by combining ortho-
photo and nDSM data as presented in Figure 2. The rest of the details regarding the workflow are 
the same as for the training of the first four models, as already described. In the testing stage, the 
trained model is applied to predict building footprints on the orthophoto test set combined with 
nDSM. In Figure 6, the loss and accuracy results are shown for the training and validation of the 
five different models.

As it can be seen, both training and validation loss decrease to the point of stable performance with 
the minimal gap between them indicating the good fit of the models (Figure 6). From the training 
and validation loss curves, it can be concluded that Inria, Cesma A and Cesma B model shows opti-
mal fit, providing the best accuracy (Figure 6). The Tanzania model’s losses highlight that overfitting 
is still observed, but it has a minimal impact on accuracy. For the AIRS model, slight underfitting 
is noticed; however, both curves show stable performance over the last ten epochs. As we explained 
earlier, the number of epochs was determined by early stopping to avoid overfitting and increase 
generalisation ability. A low number of epochs were expected, taking into account the size of the 
network and the size of the training dataset. However, the graphs and high accuracy indicated that 
the number of epochs was enough for fine-tuning of the pre-trained network for this specific task. 
The shape of curves doesn’t suggest that the increase in the number of epochs would increase ac-
curacy. Additionally, the accuracy of building footprint detection can be increased by increasing the 
training dataset’s size and network depth. Tanzania, Inria, and AIRS models are tested using two 
different test sets (initial test set and Cesma A test set) to evaluate the approach used in this paper, 
while Cesma A and Cesma B models are tested using only one test set (Cesma A and Cesma B test 
set respectively), as described in the previous section. For each model, several metrics are used to 
evaluate models on the Cesma test data (Figure 1). As the primary evaluation metric, the IoU was 
used, due to its high correlation to geometry representation of the object, and it is the only metric 
presented for evaluation on the original test set. On the other hand, for evaluation on the orthophoto 
measures for Overall Accuracy (OA), Precision, Recall, F1 and IoU metric are presents. The results of 
the accuracy assessment are presented in Table 4. The visual inspection of merged classified patches 
is presented on Figure 7.

As for the comparison among the freely available datasets, Inria model provided the highest accuracy in 
the test phase (test phase based on original test dataset). The work done by Khalel and El-Saban (2018) 
produced the IoU of 74.6% by using 2-levels U-Net and Inria dataset while Pan et al. (2019) used the 
generative adversarial network with spatial and channel attention mechanisms on the same dataset 
achieving the IoU of 74.92%. The reported results of IoU prove that the proposed approach achieved 
the state-of-the-art performance on the Inria dataset.
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Figure 7:  Examples of prediction results.
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Table 4: Evaluation of the segmentation results. Measures of the Intersection over Union (IoU), overall accuracy (OA), precision 
and F1 score for different models using original test data and test data created from orthophoto of the study area.

Model
Original test set Orthophoto

IoU OA Precision Recall F1 IoU

Tanzania model 70% 0.7986 0.6565 0.4495 0.5336 0.3639

Inria model 81% 0.7883 0.0966 0.2420 0.1381 0.0742

AIRS model 80% 0.9302 0.7204 0.8589 0.7836 0.6442

Cesma model A Same as orthophoto 0.9793 0.9151 0.9652 0.9394 0.8858

Cesma model B Same as orthophoto 0.9795 0.9233 0.9793 0.9505 0.9056

In the test phase based on Cesma A test dataset, the Inria model almost wholly omits the buildings 
producing low accuracy (Table 4). The low accuracy of Inria model is expected due to lower spatial 
resolution (30 cm vs 2.5 cm) and differences in ground truth data. Bad quality of the ground truth 
can make testing difficult, influence the results and cause uncertainty on incorrectly labelled features 
(Chena et al., 2019; Schuegraf and Bittner, 2019) and low precision (Table 4) indicating the significant 
underestimation of the area covered by buildings (7). 

The values of precision and recall (Table 4) show that the model trained on Tanzania dataset cannot 
extract the building footprints well. The Tanzania model produces a high false-positive rate and low recall 
(0.45) value due to the misclassification of low albedo surfaces and shadows. Khalel and El-Saban (2018) 
reported a similar problem. The roofs in Tanzania dataset has more structural complexities (Figure 3) which 
cause more classification errors (Boonpook et al., 2018). Besides that, the dataset contains the significant 
number of not finished or demolished buildings producing high noise level and confusion of algorithm.

In addition, AIRS model is capable of extracting building footprints with high accuracy (0.86) however 
it also tends to misclassify the ground point as buildings (0.72) producing the moderate F1 value (0.78). 

Visual inspection shows that Cesma dataset is much more affected by illumination variance compared 
to the open datasets (Figure 3). Part of the rooftop oriented opposite of the sun was in the shadow and 
had a low reflection while the opposite side is bright and shows a high reflection in all bands. Different 
reflection confused the algorithm and caused false-negative pixels at rooftops. Also, the shadows caused 
by rooftop infrastructure such as antennas, chimney were misclassified. 

Visual inspection shows the AIRS, and Cesma has similar characteristics regarding the rooftop shape and 
materials. On the other hand, the Inria and Tanzania have flat concrete or more complex rooftops made 
mostly from metal which is significantly different compared to Cesma datasets (Figure 3). Since the AIRS 
provided significantly higher IoU (0.64) comparing with Inria and Tanzania dataset (0.07 and 0.36), it is es-
sential to note that rooftop geometry and roughness has a significant influence to the algorithm performance. 

In addition, the visible structural organisation in different urban morphologies also causes models per-
formance loss (Demir et al., 2018). The Cesma A and Cesma B produce significantly larger accuracy 
compared to publicly available datasets. 

Comparison of the Cesma A and Cesma B evaluation results shows that the IoU has been improved by 
1.98% when nDSM was used. Xu et al. (2018) obtained the accuracy improvement of 1.64% by using DSM. 
Usage of nDSM improves building segmentation on pixels that belong to the rooftop but have different 
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spectral values. Although the pixels that belong to the rooftop exposed to the sun and rooftop out of the 
sun have different spectral values, they have same nDSM values, so it will improve accuracy in those cases. 
Some pixels belonging to roads have similar spectral values to the building rooftops (Xu et al., 2018), but 
they have small nDSM values and will not be classified as buildings. As a result, usage of nDSM improves 
the capabilities and accuracy of the model in building segmentation. The results can be observed in 7.

4 CONClUSION

Modern society requires accurately mapping of the buildings in the shortest time period possible, with 
the least amount of resources used. Although new technologies have made the quick acquisition of data 
possible, a considerable gap still exists in mapping this data. To overpass this gap and automate the process, 
the possibility of applying the transfer learning approach, using the U-Net model based on ResNet-34 
architecture on different datasets and then applying this model to map buildings in Cesma was tested.

The usage of existing datasets increases the time efficiency of extraction of building footprints, but it is 
not proven that such datasets can efficiently be used to generalise in different parts of the world. The 
training and evaluation of the neural network proved that the Tanzania dataset contains a significant 
amount of noise with an IoU of 70%. Better results are achieved with AIRS and Inria datasets, with 
nearly identical IoU’s of 80% and 81% respectively.

The application of neural networks trained on Tanzania, Inria and AIRS datasets showed low generalisation 
capability for the city of Banja Luka. Among the tested datasets, the poorest generalisation capability was 
shown by Inria model (IoU, 7.42%) although it had the best IoU on the original validation set. On the 
other hand, the best generalisation was achieved with AIRS model, with an IoU value of 64.42%. Although 
this value looks promising in comparison to that of the Inria and Tanzania models it is still not suitable 
to be applied for extraction of building footprints for urban planning because to perform quality urban 
planning; it is necessary to have an accurate location for each existing object. The former shows that it is 
not possible to efficiently apply the existing publicly available datasets for the training of neural networks 
that will be used for detection of building footprints in Banja Luka. The analysis of detected footprints 
provides deeper insight into the level of cadastral maps update, which is vital information to determine 
the usability of cadastral maps for urban planning. Based on accuracy assessment and visual comparison 
of results, it can be concluded that the difference in material, colour, and structure of rooftop significantly 
limits the generalisation ability of the proposed model. Much better results were achieved with a neural 
network trained on datasets created from the AOI orthophoto IoU 88.58%. A Combination of RGB 
orthophoto with nDSM resulted in a 2% increase in IoU due to the resolution of images and errors that 
could not be avoided during the creation of the orthophoto, which then caused errors in extraction of 
building footprints. In the future, the possibility of integration of building 3D models, created from point 
clouds, and detected building footprints for updating of cadastral maps need to be examined.
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