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Enačbo gibanja umetnega satelita lahko rešujemo z 
različnimi metodami. Pri nekaterih diskretne položaje 
satelitov dobimo v enem, pri drugih v več korakih. Pri 
numerični integraciji na natančnost izračuna vpliva izbor 
velikosti koraka integracije med zaporednimi iteracijami. 
Nepravilen izbor integracijskega koraka med posameznimi 
iteracijami vodi do odstopanj, ki so lahko večja od dosegljive 
natančnosti izračuna s posamezno metodo. Zaradi tega 
moramo v izračunih integracijski korak toliko zmanjšati, 
da ne vpliva več na natančnost izračuna. V prispevku smo 
analizirali uporabnost različnih metod Runge-Kutta za 
numerično reševanje gibanja umetnega satelita, in sicer 
metodo Runge-Kutta 4. in 5. stopnje ter metodo Runge-
Kutta-Fehlerberg 4. in 5. stopnje. Rezultate izračunov smo 
primerjali s klasično metodo Runge-Kutta in ugotovili, 
da z ustreznim izborom integracijskega koraka in metode 
nekoliko upočasnimo računski čas, vendar pridobimo bolj 
kakovostne rezultate izračunov.

Several types of methods can solve equations of satellite 
motion numerically. These methods are divided into single 
and multi-step methods. The accuracy of each method 
depends directly on adopted integration step size between 
successive iterations. To achieve result with required accuracy 
it is important to maintain appropriate size of integration 
step. Inappropriate step size could cause local errors between 
iterations greater than accuracy of the method. Therefore, 
integration step size needs to be reduced until it does not 
affect accuracy of the final solution. Group of Runge-Kutta 
(RK) methods for solving equations of satellite motion 
have been analysed in this article. Five different methods: 
Runge Kutta 4th order, Runge Kutta 5th order and Runge 
Kutta Fehlberg 4th and 5th order methods were discussed. 
Compared to the classical Runge-Kutta integration method 
other methods are slower, but give results that are slightly 
more accurate.
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1 INTRODUCTION

Equations of satellite motion could be solved both analytically (Góral and Skorupa, 2012) and numer-
ally (Gaglione et al., 2011). Runge-Kutta (RK) methods are one of the well-known numerical methods 
for solving differential equations (Kosti et al., 2009; Ozawa, 1999; Sermutlu, 2004), while 4th order 
Runge-Kutta method is recommended to solve equations of satellite motion by GLONASS Interface 
Control Document (ICD-GLONASS, 2008).

Currently there are very few publications referring to comparison of numerical methods to solve GNSS 
equations of satellite motion. Numerical integration of low Earth orbiting satellites was performed by 
(Es-hagh, 2005). The author compared two variable step integration methods: Adams and RungeKut-
taFehlberg (RKF) methods. Adams’ method is recommended for long arc orbit integration or in low 
resolutions (large step size) orbit integration. In contrast, RKF method is better to be used for highresolu-
tion (small step size) solutions. (Sermutlu, 2004) presented the comparison of accuracy and speed tests 
of RungeKutta 4th and 5th order for solving Lorenz equation. He noticed that 4th order method gives 
more accurate results for shorter running times, but as step sizes decline, 5th order method gives more 
accurate results. (Khodabin and Rostami, 2015) obtained the same results. The authors analysed different 
orders of Runge-Kutta methods for applications in electric circuits. They confirmed superiority of higher 
order RK methods over other methods. (Montenbruck, 1992) compared multistep, interpolation and 
Runge-Kutta methods for the numerical integration of ordinary differential equations of orbital motion. 
The author showed that both single-step and multi-step methods are competitive. Equations of satellite 
motion were also solved by many different approaches, e.g. RungeKuttaFehlberg method (Atanassov, 
2010), analytically (Kudryavtsev, 1995), by MATLAB ODE45 function (Bradley et al., 2014) or by new 
types of Runge Kutta methods (Gonzalez et al., 1999).

Runge-Kutta 4th order method to solve equations of satellite motion was presented by (ICD-GLONASS, 
2008), but without any data concerns accuracy. It is clear that the error in orbit integration strongly 
depends on a step size. GLONASS satellite integration results have no explicit differences between solu-
tions from 1 to 300 s integration step size. The author suggested that 60 s GLONASS integration step 
width is sufficient in any case, because for small angular distances the satellite orbit could be considered 
as nearly linear. 

2 KEPLERIAN MOTION

Simplified satellite orbiting is called Keplerian motion (Zare, 1982). In Earth-artificial satellite, setting the 
mass of a satellite can be considered negligible and does not enter the motion equations system (Breiter 
and Elipe, 2006). This is due to its size and mass that are negligibly small relatively to the mass of the 
Earth. The satellites motion is governed by the Newton’s second law hence, according to the formula:

 µ 



= 2-
r r

r
r  (1)

where:

µ = GM - the product of Newton’s gravitational constant and mass of the Earth,
r - distance between the Earth and satellite centres.
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Equation 1 relates to a motion in an inertial system. Two vectors or 6 scalars are the solutions of this 
second order differential equation (Keplerian elements). They are the results of double integration of 
(1). In case of the Earth’s artificial satellite, perturbing forces affecting its position should also be taken 
into account (Bobojć and Drożyner, 2011):

 r
= +K2-

r r
µ

r






 (2)

where:

K - perturbing forces.

Gravitational forces due to the Earth as well as the strength of perturbing forces determine satellites mo-
tion. Table 1 shows the magnitude of perturbing forces and their effect on a GNSS satellite.

Table 1: Perturbing accelerations acting on a GPS satellite (Dach et al., 2007).

Source Acceleration [m/s2] Orbit error after 24 hours [m]

Two-body term of the Earth’s gravity field 0.59 ∞

Oblateness of the Earth 5 ∙ 10-5 10.000

Lunar gravitational attraction 5 ∙ 10-6 3.000

Solar gravitational attraction 2 ∙ 10-6 800

Other terms of the Earth’s gravity field 3 ∙ 10-7 200

Radiation pressure (direct) 9 ∙ 10-8 200

Y-bias 5 ∙ 10-10 2

Solid Earth tides 1 ∙ 10-9 0.3

The main perturbing force affecting a satellite is the Earth’s oblateness that characterizes polar flatten-
ing of the Earth. The effect of accelerations due to the luni-solar gravitational perturbations is an order 
of magnitude smaller than the second zonal harmonic. We can consider other forces as negligible. 
It may be assumed that perturbing forces acting on a GPS satellite affect will be different that on a 
GLONASS satellites due to two reasons. Firstly, GLONASS satellite orbit the Earth much lower, that 
is mean they are much sensitive to gravitational perturbations. Secondly, GLONASS satellites have 
larger area-to-mass ratios than GPS satellites, which implies that the impact of solar radiation pressure 
is larger for GLONASS.

3 RUNGE-KUTTA METHODS

Numerical integration methods can be divided into single and multi-step methods. In case of multi-step 
methods, to calculate the predicted value of the function, we must know values of the function at some 
previous time points (e.g. tn-1, tn-2). The best known multi-step methods used to solve equations of satellite 
motion are Cowell and Encke methods (Liu and Liao, 1994). Whereas single-step methods based on a 
single initial point of time, allow us to calculate predicted values of the function. The best-known single-
step methods for solving satellite equations of motion are Runge-Kutta 4th and higher order methods.

The equation of satellite’s motion is a second order differential equation. Therefore, it has to be converted 
to the system of first order differential equations to be solved by RK methods as following:
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 y'(x) = f (x, y(x)) 
(3)

 y(t0) = y0

Runge-Kutta method allows calculation of the approximate value of the function y(xn) for 
a = x0 < x1 < … < xn = b, as in the formula:

 

s

n+1 n i i
i=1

n+1 n

y = y + h b k

x = x + h

∑  (4)

where:

 
i-1

i n i n ij j
j=1

k =f x +c h, y +h a k
 
  
 

∑  (5)

and

 
1

s

i ij
j

c a
=

= ∑  (6)

where: 

a, b - constants,
h - step size.
s - Runge-Kutta method’s order,
i=1,2,… ,s.

Expanding (2) into first order differential equations still makes it impossible to solve them analytically in 
a fast and simple way. GLONASS Interface Control Document (ICD-GLONASS, 2008) recommends 
the use of Runge-Kutta 4th order method for this purpose, as it ensures adequate accuracy altogether 
with the simplicity of the solution. Equation (7) is an extension of (2) into a form of scalar functions. 
It takes into account perturbing forces due to the flattening of the Earth (second zonal harmonic) and 
influence of the Sun and Moon (Poutanen et al., 1996):

 2 2
2

20 LS3 5 2

2 2
2 _

20 LS3 5 2

2 2

20 LS3 5 2

dx
= x

dt
dy

= y
dt
dz

= z
dt
dx 3 a 5z

= - x + C x 1 - + x + x + 2 y
dt r 2 r r

dy 3 a 5z
= - y+ C y 1 - + y + y 2 x

dt r 2 r r

dz 3 a 5z
= - z + C z 3 - + z

dt r 2 r r

µ µ ω ω

µ µ ω ω

µ µ

 
 
 
 
 
 
 
 
 









 



 





 (7)
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where: 

x, y, z - satellite coordinates,

x, y,z  

 - satellite velocities,

LS LS LSx , y ,z  

 - lunisolar accelerations,

a - semi-major axis of the ellipsoid,
ω - the Earth rotation rate,
C20 - second zonal harmonic coefficient of the geopotential,

2 2 2r = x + y + z ,

µ = GM.

Second zonal harmonic is known from parameters of current PZ-90 (Параметры Земли 1990 года, 
Parameters of the Earth 1990) realization. In calculations, it is adopted as the known parameter. Luni-
solar accelerations are varying in time, thus they are transmitted in GLONASS navigational (broadcast) 
message in 15 min intervals, and they are assumed constant within ±15 min from the initial position.

4 GLONASS NAVIGATION MESSAGE

GLONASS navigation message contains information regarding satellites’ position parameters for a 
single observation epoch. Those data are recorded in RINEX format *.yyG (Gurtner and Estey, 2007) 
with 30-minutes interval as vector components of satellite position, velocity and acceleration (Table 2).

Table 2: GLONASS data record description (Gurtner and Estey, 2007).

Observation record Description Format
SV / EPOCH / SV CLK - Satellite system (R), satellite number 

(slot number in sat. constellation)
- Epoch: Toc - Time of Clock (UTC)
__- year (4 digits)
__- month, day, hour, minute, second
- SV clock bias (sec) (-TauN)
- SV relative frequency bias (+GammaN)
- Message frame time (tk+nd*86400)
_ in seconds of the UTC week

A1, I2.2

1X, I4
5 (1X, I2, 2),
3D19.12

BROADCAST ORBIT – 1 - Satellite position X __ __ __ (km)
- Satellite velocity X dot__ __ (km/sec)
- Satellite X acceleration__ __ (km/sec2)
- Satellite health (0=OK)

4X, 4D19.12

BROADCAST ORBIT – 2 - Satellite position Y________(km)
- Satellite velocity Y dot__ __ (km/sec)
- Satellite Y acceleration__ __ (km/sec2)
- Satellite frequency number__(-7…+12)

4X, 4D19.12

BROADCAST ORBIT – 3 - Satellite position Z________ (km)
- Satellite velocity Z dot__ __ (km/sec)
- Satellite Z acceleration__ __ (km/sec2)
- Age of oper. information__ _(days)

4X, 4D19.12
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Figure 1 contains a single record of GLONASS navigational message in RINEX format. It relates to the 
satellite PRN 1 from 9th June 2013 at 0:00 GLONASS time. 

PRN y m d h m s SV clock bias (sec) SV relative frequency bias Message frame time

1 13 6 9 0 0 0.0 -0.172111205757E-03 0.000000000000E+00 0.846000000000E+05

Satellite position X (km) X velocity (km/sec) X acceleration (km/sec2) Health

0.144409179688E+05 -0.264622497559E+01 0.000000000000E+00 0.000000000000E+00

Satellite position Y (km) Y velocity (km/sec) Y acceleration (km/sec2) Frequency number

0.522635791016E+04 0.877996444702E+00 0.000000000000E+00 0.100000000000E+01

Satellite position Z (km) Z velocity (km/sec) Z acceleration (km/sec2) Age of oper. information

0.203675307617E+05 0.165256118774E+01 -0.279396772385E-08 0.000000000000E+00

Figure 1: Example of GLONASS navigation message.

Contrary to GPS, GLONASS message contains information about satellites’ positions in ECEF coordinate 
system (Gaglione et al., 2011). Those data for a single satellite are stored in four 80-byte lines (Figure 1). 
GLONASS ephemeris message contains information about satellites’ position in current PZ-90 realiza-
tion (Boucher and Altamimi, 2001). PZ-90.02 realization was obligatory since 2007 (Montenbruck et 
al., 2015), currently PZ-90.11 is in use (IGSMAIL-6896).

5 GENERAL COMPARISON

In this paper, a group of Runge-Kutta methods were analysed in resolving equations of satellite motion 
for GLONASS satellite. Parameters of GLONASS space segment are presented in Table 3.

Table 3: GLONASS space segment parameters (Angrisano et al., 2013).

Parameter Value

Number of SV 24

Orbital planes 3

Orbital altitude (km) 19 100

Orbital inclination 64.8°

Ground track period 8 sidereal days

Layout Symmetric

Broadcast ephemerides ECEF

Datum PZ-90

This paper discusses four variants of Runge-Kutta method: best-known 4th order method (RK4), 5th order 
method (RK5) and Runge-Kutta-Fehlberg 4th (RKF4) and 5th (RKF5) order methods. Table 4 shows 
formulas of analysed RK methods.

The determination error of satellite position depends on Runge-Kutta method order and adopted for 
calculations integration step. In principle, position determination is more accurate for smaller integration 
steps. Smaller integration step (h) carries a serious increase of intermediate positions thus, it increases 
computation time. Each step h, depending on the adopted formula requires calculation of four, five or 
six intermediate values of the function analysed in this paper (Table 4). Therefore, the best solution ap-
pears to be a method, which provides required accuracy of a satellite position solution combined with 
the highest execution speed. It is especially important in case of real-time solutions.
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Table 4: Parameter of analysed Runge-Kutta methods (Rentrop et al. 1989; Sermutlu, 2004).

Runge-Kutta 4th order (RK4) Runge-Kutta 5th order (RK5) Runge-Kutta-Fehlberg (RKF45)
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6 RESULTS

This paper shows research of GLONASS’ satellite position determination by RK methods according to 
the integration step size and its effect on the accuracy and speed of solution. There has been analysed 
position of #10 GLONASS satellite (SV 717, orbit 2, launched 25/12/2006, active from 03/04/2007) 
due date 01/01/2012 at three different moments of time: 1015, 1045 and 1115 UTC. The survey is based 
on broadcast orbit coordinates taken with maximum available accuracy of 12 decimal digits (Figure 1). 
Accuracy analysis was performed based on ORBGEN results, which is a part of Bernese GPS Software 
5.0 (Dach et al., 2007). Comparison of numerical solutions of (2) was carried out based on the author’s 
own scripts implemented in Matlab R2010b®. They were run on Lenovo L420 computer equipped with 
Windows 7 Professional, with the Intel Core i5-2410M 2.30 GHz, 4.00 GB RAM.

Based on known initial function values of position, velocity and acceleration it is possible to determine 
satellite’s position for any moment within the range ±15 min (900 s). This time span comes from the 
fact that the GLONASS ephemeris is updated every 30 minutes. If ephemeris data are used in the range 
exceeding ±15min difference between calculated and actual position expected is grow rapidly every ±15 
min (Figure 2).

Figure 2: Discrepancy of forward and backward 15 - minute integration.
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Figure 3 shows errors of XYZ components calculated based on initial satellite position by RK4 with 
integration step h = 30 s. After 30 minutes, the error of each component does not exceed 1 meter, after 
60 minutes error is smaller than 5 meters, and after 4 hours exceeds value of several meters. Therefore, 
in an application of numerical methods for solving equations of satellite motion information on satellite 
position in the shortest possible time intervals is very important.

0 30 60 90 120 150 180 210 240

Time [min]

-75

-50

-25

0

25

50

75

 E
rr

or
 [m

]

 dX
 dY
 dZ

Figure 3: Increase of satellite position error (RK4, h = 30 s)

Figure 4 shows more detailed data presented on Figure 3. “Known” coordinate and speed components are 
at t = 0 s. At t = 900 s follows update of satellite ephemeris data and then should be used next “known” 
position coordinate (t = 1800 s for this figure) and solved backward. Therefore, the increase of XYZ 
components error magnitude due to the updated ephemeris parameters is clearly visible.
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Figure 4: Increase of satellite position error (RK4, h = 1 s).
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Figure 5 shows the difference between RK4 method with the step h = 1 s solution and the reference 
solution. The figure presents three consecutive “backward” and “forward” solutions within 900 s interval. 
At 900 s, 2700 s and 4500 s moment, satellite coordinates, velocity and acceleration values are known. 
Solutions of three analysed, successive time points have similar errors. The offset of each component is 
a result of its update. That is why the determination of a single satellite position should  be done within 
±900 s around the known position. Maximum error in X component is around -0.1 m, Y around 0.9 
m, and Z component up to 0.1 m error. Consequently, maximum 3D position error is 0.15 m. Thus, 
this type of calculation can be considered as sufficient for GLONASS broadcast orbit determination, 
due to its accuracy of about several meters.
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Figure 5: Example of three consecutive integration steps.

Table 5: Average duration of positions calculation and percentage changes in relation to RK4 [ms].

Step size h [s] 1 3 5 10 20 30 90 180 300 900

Number of steps 900 300 180 90 45 30 10 5 3 1

RK4 4.816 1.605 0.962 0.480 0.241 0.160 0.054 0.027 0.016 0.006

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

RK5 7.374 2.881 1.758 0.992 0.468 0.353 0.147 0.084 0.060 0.038

153% 180% 183% 207% 194% 221% 272% 311% 375% 633%

RKF4 7.712 2.539 1.557 0.776 0.401 0.275 0.107 0.066 0.049 0.031

160% 158% 162% 162% 166% 172% 198% 244% 306% 517%

RKF5 8.047 2.719 1.608 0.774 0.403 0.275 0.113 0.079 0.054 0.033

167% 169% 167% 161% 167% 172% 209% 293% 338% 550%

Table 5 presents a comparison of average speed of satellite position determination. These values are means 
of 100 000 consecutive solutions of Runge-Kutta methods. It depends on the adopted integration step 
size h. Increased integration step size decreases time of position determination. For each integration step 
the most efficient is Runge-Kutta 4th order method (RK4), due to the least complexity. The other three 
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methods depending on the step length are between 2 to 6 times slower than RK4 method. Despite of 
the most complex equations RKF5 method is the second fastest after the RK4 method among analysed. 
RKM is the slowest method for each step size. Speed of calculation in this method is comparable to other 
only for 1 and 3 s integration step sizes.

Figure 6 presents calculated errors of “forward” satellite position. It reveals the difference between the 
author’s and model solution based on integration step size. In case of small step length, less than 180 
s, results are comparable for all tested methods and the maximum error does not exceed 0.15 m. This 
accuracy is sufficient for navigation purposes. 

1 3 5 10 20 30 90 180

Integration step [s]

130

135

140

145

150
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160

Er
ro

r [
m

m
]

 RK4
 RK5
 RKF4
 RKF5

Figure 6: Runge-Kutta method determination error [mm].

With the increase of integration step length a distinct advantage of higher order RungeKutta methods 
may be observed. It is clearly visible for integration steps h = 300 s and h = 900 s. RKF method projects 
satellite’s trajectory with 0.60 cm accuracy for a single, 900 s step. If you need to determine denser num-
ber between consecutive positions/coordinates (e.g. coordinates are available every 60 s, but you want 
to have coordinates every 1 s) all you have to do is decrease step-size to needed. Therefore, simplicity is 
the main advantage of using this method against GPS, where navigation message data contain Keple-
rian elements, which must have analytical solution. Moreover, GLONASS navigation message contains 
Cartesian coordinates and velocities in current PZ-90 realization every 30 min, so it is much affordable 
data than Keplerian elements in GPS navigation message available every 2 hours. 

7 CONCLUSIONS

The accuracy of GLONASS satellite’s position calculated numerically depends mostly on integration 
step size. The influence of applied RK method type and order is smaller. Short integration step allows 
a relatively high precision, but it involves extension of solution time. Error of calculated position from 
initial parameter (epoch) increases together with “distance” from known coordinates. This study con-
firmed that higher order RK methods are more accurate. This fact is more evident especially in large-size 
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integration steps of RK computations. The previous studies showed that the 5th order method or modified 
RKF methods are more accurate than the RK4 recommended by the GLONASS-ICD. On the other 
hand, due to the simplicity of equations RK4 order method is the fastest of the all analysed methods. 
However, an argument of economical saving time was more important in the 90s, when PCs’ computing 
power was less efficient smaller than today. Currently due the highest accuracy of analysed methods, the 
most suitable for calculation of GLONASS satellite position is RungeKuttaFehlberg 5th order method.
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